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• Genome–scale metabolic models (GSMs) are arguably the only

successful example of predicting a complex (i.e. polygenic)

phentoype from a genome sequence.

• Metabolic phenotypes are composed of :

◦ metabolic capabilities (major nutrients used, products

formed);

◦ nutritional requirements (essential nutrients for growth);

◦ flux patterns in the metabolic network (pathways used);

◦ metabolic responses to change in the environment, and

◦ metabolic effects – if any – of gene mutations.
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There are two main types of metabolic model:

• Structural — need list of reactions with a full stoichiometric

chemical equation; give existence and number of routes; optimal

stoichiometries; network flux values.

• Dynamic or Kinetic — need full kinetic description of each

enzyme/step; predict time–courses, steady–states, sensitivity

analysis or control distribution . . . Can be deterministic or

stochastic.
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enzyme/step; predict time–courses, steady–states, sensitivity

analysis or control distribution . . . Can be deterministic or

stochastic.

There is no organism for which we have a complete kinetic

description of every metabolic enzyme, hence GSMs are of

necessity, structural models.

The most practical technique to analyse GSMs is linear

programming, also known as Flux Balance Analysis (FBA) in this

context.
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• Linear Programming (LP) is a mathematical optimisation method

for systems of under–determined linear equations that assigns

values to variables, given some known constraints, such that a

linear function of some variables is optimised (minimised or

maximised).

• Flux Balance Analysis (FBA) is the application of LP to structural

metabolic models, such that:

◦ Reactions (variables) are assigned fluxes (values) consistent

with every internal metabolite being at steady state,

◦ some variables are constrained to match experimental

observations and known biochemical limitations,

◦ and some biologically meaningful objective is optimised.
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• Variables: Unknown fluxes.

• Constraints: Input and/or output fluxes.
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dA/dt = A tx− R1

dB/dt = R1 − R2 − R4

dC/dt = R2 − R3

dD/dt = R4 − R6 − R5

dE/dt = R3 − R5 − E tx

dF/dt = R6
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dA/dt = A tx− R1 = 0

dB/dt = R1 − R2 − R4 = 0

dC/dt = R2 − R3 = 0

dD/dt = R4 − R6 − R5 = 0

dE/dt = R3 − R5 − E tx = 0

dF/dt = R6 = 0
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• Other possible constraints:
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• Other possible constraints:

◦ Reaction reversibility, vi ≥ 0, vi ≤ 0, −∞ ≤ vi ≤ ∞
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• Other possible constraints:

◦ Reaction reversibility, vi ≥ 0, vi ≤ 0, −∞ ≤ vi ≤ ∞
◦ Enzyme concentration and catalytic capacity, |vi| ≤ vmax
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Two ways of representing biomass synthesis. In both cases, major

biomass components are assumed to be exported by the metabolic

network.
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A common practice is to represent the formation of biomass for

growth as a pseudo–reaction of the model with non-integral

stoichiometries for each of the biomass components.

• Synthesis is represented as a single reaction where components

of biomass are the reactants and their in vivo concentrations are

represented as stoichiometric coefficients:

• (0.000188) 12dgr2 ST + (0.05) 5mthf +

(59.964348) atp ... + (0.284577) val-L -->

x Bio + (59.81) adp + (58.266936) h + (59.81)

pi + (0.771532) ppi

• It takes what is a variable output of the metabolism and makes it

part of the metabolic network structure, so biomass composition

cannot be varied as part of the model analysis.

• Biomass composition is known to be variable with, e.g. growth

rate of microorganisms.
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• Synthesis is represented as a set of reactions, one for each

biomass component, whose (variable) flux is constrained during

analysis to a value corresponding to in vivo concentration,

multiplied by the growth rate:

• 12dgr2 ST tx: 12dgr2 ST --> x 12dgr2 ST,

#v12dgr2 ST tx = 0.000188 · µ

• 5mthf tx: 5mthf --> x 5mthf, #v5mthf tx = 0.05 ·µ

•
...

• Biomass composition can be changed without changing the

model structure.

• Biomass composition can become a variable of the optimisation.
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where:
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Applications of FBA are often said to involve maximisation of growth

rate. e.g. :

Max. : vbiomass ←− objective : growth rate

subject to

{

Nv = 0 ←− steady state constraint

vglucose ≤ vobs ←− Glucose uptake limited

where:

• biomass: (0.000188) 12dgr2 ST + ... +

(0.284577) val-L --> x Bio + (59.81) adp +

(58.266936) h + (59.81) pi + (0.771532) ppi

• glucose: x glucose --> glucose

In fact, this is maximum biomass yield for a fixed amount of

substrate. (Schuster et al, J Theor Biol, 252, 497–504 2008)
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The predicted growth rate is the yield times the substrate uptake rate.

(Teusink et al, 2009)
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The predicted growth rate is the yield times the substrate uptake rate.

(Teusink et al, 2009)

But this will only predict growth rate if situations that affect yield (e.g.

mutations) have no effect on substrate uptake rate.
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The predicted growth rate is the yield times the substrate uptake rate.

(Teusink et al, 2009)

But this will only predict growth rate if situations that affect yield (e.g.

mutations) have no effect on substrate uptake rate.

Experiment shows this is not necessarily the case, but FBA models

cannot predict the effects on substrate uptake.
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What is the ‘objective’ that regulation of cell metabolism is trying to

achieve?

Examples of objectives used in FBA:

• Minimisation of enzyme investment, modelled as minimisation of

flux.

• Maximisation of growth yield (or rate).

• Minimisation of substrate input to achieve growth.

• Maximisation of ATP yield.
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Note that, without including any mechanisms of regulation in an FBA

model, the objective function introduces implicit metabolic regulation.
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What is the ‘objective’ that regulation of cell metabolism is trying to

achieve?

Examples of objectives used in FBA:

• Minimisation of enzyme investment, modelled as minimisation of

flux.

• Maximisation of growth yield (or rate).

• Minimisation of substrate input to achieve growth.

• Maximisation of ATP yield.

Note that, without including any mechanisms of regulation in an FBA

model, the objective function introduces implicit metabolic regulation.

But what objective is appropriate or a non–growing cell of a tissue in

a multi–cellular organism?
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Does it matter? Surely any maximisation can be expressed as a

minimisation and vice versa?

• On maximisation, LP algorithms drive all variables as far as

possible to their upper limits (constraints), which requires that

upper bounds are placed on fluxes. As a result, solutions contain

maximal fluxes for any non–driven cycles, requiring complicated

post–processing to eliminate this artefact.

• Minimisation of substrate input for a given amount of biomass

would give essentially the same solution, but the algorithm would

drive variable values as low as possible, so non–driven cycles

are assigned zero net flux.
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• The objective (originally proposed by Holzhütter) is to mimimise

the sum of all fluxes in the system for consumption of a given

amount of nutrient, implying minimum investment in enzymic

machinery.

• This allows assignment of different costs to different reactions to

represent other constraints, such as protein synthesis cost of

different enzymes, or investment of scarce resources such as

iron.

• In a comparison of FBA solutions of our Arabidopsis model with

flux estimates by 13C Metabolic Flux Analysis, minimisation of

total flux gave the best match. (Cheung et al, Plant Journal, 75

1050–61, 2013)
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• All cells consume substrates for maintenance even when they are

not growing.

• For microbes, chemostat experiments can determine the

non–growth associated substrate requirement. This is usually

converted to an ATP requirement, according to the ATP yield of

complete catabolism of the substrate.

• In FBA models, this maintenance is represented by a constraint

on a generic ATPase reaction, which is needed anyway because

creating biomass generates excess ATP. But is the same

constraint valid in all circumstances, and is the substrate

requirement solely about ATP generation?
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• No, maintenance is not constant, and it’s not just ATP generation.

• Even for E. coli, maintenance varies several fold depending on

the limiting substrate.

• For aerobic organisms, some maintenance is combating

oxidative stress by making NADPH. In the comparison of FBA

solutions of our Arabidopsis model with flux estimates by 13C

Metabolic Flux Analysis, the pentose phosphate pathway fluxes

could only be matched by assuming a significant production of

NADPH. (Cheung et al, Plant Journal, 75 1050–61, 2013)
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The potential causes could have been:

• Transhydrogenase cycles in the model solutions causing

generation of NADPH from NADH via dehydrogenases with dual

specificity for NAD and NADP or pairs of NAD– and NADP–

specific enzymes for the same metabolic conversion.

• Lack of sufficient representation of compartmentation in the

original model allowing transhydrogenase cycles that would be

prevented by physical compartmentation in the cell, or NADPH

generated in one compartment being utilised in another.

• Under–estimation of the requirement for NADPH generation, e.g.

for cell maintenance in the face of oxidative stress.
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We investigated the effect of a requirement for additional NADPH in

two ways:

• We did a 2–D scan of two constraints: ATP demand and NADPH

demand. We found the locus of glucose uptake equal to the

experimental uptake; on that line we found a point where the ratio

of glycolysis:OPPP fluxes was the same as in the MFA model.

• We constrained the glucose uptake to the experimentally

observed value, then maximised the ATP and NADPH generation

using a range of relative weighting factors to obtain the Pareto

optimal front for dual optimisation of ATP and NADPH. Again, on

this front, we located the point matching the MFA result.

The outcome is similar in both cases.
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Point 1 coincides with the flux distribution in the MFA solutions.
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Distances between the model flux solutions and the MFA result for

different optimisation functions.
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• Many metabolic models (including Human Recon2) contain the

reaction:

succinate + FAD←→ fumarate + FADH2
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• Many metabolic models (including Human Recon2) contain the

reaction:

succinate + FAD←→ fumarate + FADH2

• This is WRONG! It’s an old textbook error.
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• Many metabolic models (including Human Recon2) contain the

reaction:

succinate + FAD←→ fumarate + FADH2

• This is WRONG! It’s an old textbook error.

• There is no pool of circulating FAD, nor is FADH2 the product of

the succinate dehydrogenase reaction, nor of any of the other

flavin–containing dehydrogenases. It remains bound to its

enzyme and participates in the catalytic cycle.
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• Many metabolic models (including Human Recon2) contain the

reaction:

succinate + FAD←→ fumarate + FADH2

• This is WRONG! It’s an old textbook error.

• There is no pool of circulating FAD, nor is FADH2 the product of

the succinate dehydrogenase reaction, nor of any of the other

flavin–containing dehydrogenases. It remains bound to its

enzyme and participates in the catalytic cycle.

• The correct form of the reaction is:

succinate + CoQ←→ fumarate + CoQH2
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Take a model and try the following test:

• Set the transport rate of all carbon–containing substrates to zero,

and the rate of hydrolysis of ATP to a positive value.
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and the rate of hydrolysis of ATP to a positive value.

• Try solving the model.
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Take a model and try the following test:

• Set the transport rate of all carbon–containing substrates to zero,

and the rate of hydrolysis of ATP to a positive value.

• Try solving the model.

There should be no feasible solution.
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Take a model and try the following test:

• Set the transport rate of all carbon–containing substrates to zero,

and the rate of hydrolysis of ATP to a positive value.

• Try solving the model.

There should be no feasible solution.

There are published models that fail this fundamental test.
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Take a model and try the following test:

• Set the transport rate of all carbon–containing substrates to zero,

and the rate of hydrolysis of ATP to a positive value.

• Try solving the model.

There should be no feasible solution.

There are published models that fail this fundamental test.

There should also be no solutions for net oxidation or reduction of

NAD(P)H.
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• Is bigger always better?

• Thermodynamics - avoiding futile cycles

• Database errors

• Stoichiometric testing

• Proton balancing

• Incorporating experimental data

• Situations where growth is not an appropriate objective -

multicellular organisms, microbial communities.



Conclusions

Introduction

Formulating a GSM as a

Linear Programming

Problem

Methodological Issues:

1. Representing Cell

Growth

Methodological Issues

2. Objective Functions

Methodological Issues

4. Maintenance Energy

Recurrent Errors

Other Issues

Conclusion

• Conclusions

• Acknowledgements

CMSB 2015: – 38 / 39

• FBA is a powerful tool for modelling metabolism and exploiting

genome sequences . . .

• but some of the current methodologies and assumptions should

be critically assessed for appropriateness in different situations.

• Often it is best regarded as a means of generating hypotheses

about the functioning of metabolic networks.
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