Model-based Investigation of the Effect of the Cell Cycle on the Circadian Clock through Transcription Inhibition during Mitosis

> CMSB 2015 – September 18th Pauline Traynard and François Fages and Sylvain Soliman Lifeware, Inria Paris Rocquencourt

Innin -

The cell cycle and the circadian clock

Context:

Optimizing cancer treatment with chronotherapy

Two complex systems:

<u>Circadian Clock</u>: autonomous cellular oscillator with a 24h period, synchronised by the central clock <u>Cell Cycle</u>: divisions every 24h

Question:

What are the interactions between the two?

Classical view:

Entrainment in period and phase of the cell cycle by the circadian clock (Matsuo et al 2003) Gating by Wee1

The cell cycle and the circadian clock

Context:

Optimizing cancer treatment with chronotherapy

Two complex systems:

<u>Circadian Clock</u>: autonomous cellular oscillator with a 24h period, synchronised by the central clock <u>Cell Cycle</u>: divisions every 24h

Question:

What are the interactions between the two?

Classical view:

Entrainment in period and phase of the cell cycle by the circadian clock (Matsuo et al 2003) Gating by Wee1

[Lodish et al. 03]

Paradox: experimental data show an acceleration of

the circadian clock at high FBS

Experiments and observations

- Fluorescent markers of the cell cycle and the circadian clock
- Time series in individual mice fibroblasts
- Medium with various concentrations of serum (FBS) to modulate cell cycle length
 - → Acceleration of the circadian clock in fastly dividing cells and not in confluent cells
- Some experiments begin with a Dexamethasone pulse
 - → Various modes of phase-locking

These experiments suggest that in some conditions there is a control of the circadian clock by the cell cycle

[Feillet-Krusche-Tamanini 2014]

Paradox: experimental data show an acceleration of

the circadian clock at high FBS

Experiments and observations

- Fluorescent markers of the cell cycle and the circadian clock
- Time series in individual mice fibroblasts
- Medium with various concentrations of serum (FBS) to modulate cell cycle length
 - → Acceleration of the circadian clock in fastly dividing cells and not in confluent cells
- Some experiments begin with a Dexamethasone pulse
 - → Various modes of phase-locking

These experiments suggest that in some conditions there is a control of the circadian clock by the cell cycle

[Feillet-Krusche-Tamanini 2014]

Explaining hypothesis: inhibition of the transcription *(nría*) during mitosis

Model-based investigation of that **reverse coupling** from the cell cycle to the circadian clock

- Reusing already existing differential models from the literature: Cell cycle: Qu et al 2003 Circadian clock: Relogio et al 2011
- Coupling by inhibition of transcription during mitosis

$$S * \frac{J^n}{J^n + ([MPF]/[preMPF])^n}$$

- **Model analysis** assisted with formal methods [CMSB2014] Parameter inference
- **Predictions**: mechanisms and perturbations, treatment optimization

Modeling the control of the circadian clock by the cell cycle

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

(nnía-

Modeling the control of the circadian clock by the cell cycle

- Circadian clock : Relogio Herzel (2011)
 - 20 species, 71 parameters
 - The values of 60 parameters were determined to fit experimental data (amplitude and phase) in liver cells
 - 5 genes : Per, Cry, Reverb, Ror, Bmal.
 - 2 negative feedback loops
 - 2 positive feedback loops

Relógio, A., Westermark, P. O., Wallach, T., Schellenberg, K., Kramer, A., & Herzel, H. (2011). Tuning the mammalian circadian clock: robust synergy of two loops. PLoS Computational Biology.

Modeling the control of the circadian clock by the cell cycle

$$S*\frac{J^n}{J^n+([MPF]/[preMPF])^n}$$

for each synthesis expression S in the clock

Ingia-

Modeling the control of the circadian clock by the cell cycle

$$S * \frac{J^n}{J^n + ([MPF]/[preMPF])^n}$$

for each synthesis expression S in the clock

Innia-

Formalizing the dynamical behaviors with temporal logic QFLTL(R)

- QFLTL: expressing qualitative or quantitative dynamical behaviors for oscillatory systems such as period, amplitude, phase, oscillations regularity
- Applications:
 - Data analysis, Model checking, Model analysis, Parameter inference (calibration)
 - Tools implemented in **BIOCHAM**
- Built-in functions:

Ex: **amplitude**(Mol,amp), **period**(Mol,per), **phase**(Mol1,Mol2,phase)

Temporal specification: regular oscillations with a fixed period

period([RevErb::nucl],[period])

& Exists([maxdiff1,maxdiff2,maxpeak],

maxDiffDistancePeaks([RevErb::nucl],[maxdiff1])
& maxDiffAmplPeaks([RevErb::nucl],[maxdiff2])
& maxAmplPeaks([RevErb::nucl],[maxpeak]])
& 4*maxdiff1 < period + errordiff1
& 10*maxdiff2 < maxpeak + errordiff2
& maxpeak > 0.1 + errorampl)

http://lifeware.inria.fr/biocham

Results without Dexamethasone

Kampf

3.75

12.1

1.6

Innin

Results with Dexamethasone

Dexamethasone pulses induce the expression of *per1*

- → extension of the model with a 2h event increasing the synthesis of mPER
- → The clock is disrupted and then returns to the observed entrainment, regardless of the medium but depending on the time of the pulse
- → Transitory variations could explain the noisy data

Med	No dexamethasone		Dexamethasone	
	Clock period	Division period	Clock period	Division period
FBS 10	21.9h ± 1.1h	21.3h ± 1.3h	24.2h ± 0.5h	20.1h ± 0.94h
FBS 15	19.4h ± 0.5h	18.6h ± 0.6h	NA	NA
FBS 20	NA	NA	21.25h	19.5h
FBS 20	NA	NA	29h	16h

Conclusion 1

- Explanation hypothesis for the control of the circadian clock: **inhibition of the transcription during mitosis**
- The hypothesis reproduces the acceleration of the circadian clock by a fast cell cycle
- **Prediction** of the model: **entrainment in period of the circadian clock** even in slowly dividing cells

Discrepancies on the phases

Prediction of the model

In quickly dividing cells, the phase shifts between the different components of the clock are shorter than in quiescent cells

Phase between MPF and Rev-Erbα

Medium	Experimental data	Model simulation
FBS 5	NA	18.6h
FBS 10	3.82h	20.7h
FBS 15	3.98	17.8h

- The phase between the mitosis and the circadian clock does not match the data
- Same problem in published models for the control of the cell cycle by the circadian clock

→Need to revise the model of the circadian clock?
→Consider other coupling hypothesis?

Conclusion 1

- Explanation hypothesis for the control of the circadian clock: **inhibition of the transcription during mitosis**
- The hypothesis reproduces the acceleration of the circadian clock by a fast cell cycle
- Prediction of the model: entrainment in period of the circadian clock even in slowly dividing cells

Conclusion 2

- Remaining discrepancies on the circadian phase at division
- Prediction of the model: shorter phase shifts between the components of the clock

Conclusion 1

- Explanation hypothesis for the control of the circadian clock: **inhibition of the transcription during mitosis**
- The hypothesis reproduces the acceleration of the circadian clock by a fast cell cycle
- Prediction of the model: entrainment in period of the circadian clock even in slowly dividing cells

Conclusion 2

- Remaining discrepancies on the circadian phase at division
- Prediction of the model: shorter phase shifts between the components of the clock

Acknowledgements

Lifeware Team François Fages Sylvain Soliman Grégory Batt Thierry Martinez François-Marie Floch Denis Thieffry

• Collaborations

C5Sys (ERASysBio) ANR HyClock Franck Delaunay Céline Feillet

• GENCI cluster

Public high performance computing resources