

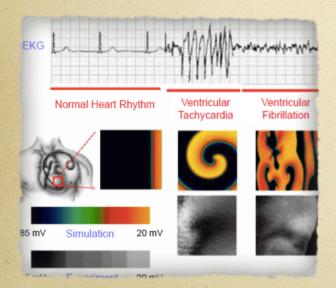
SReach:

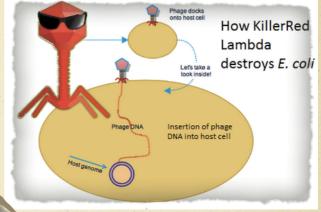
A Probabilistic Bounded δ -Reachability Analyzer for Stochastic Hybrid Systems

Qinsi Wang

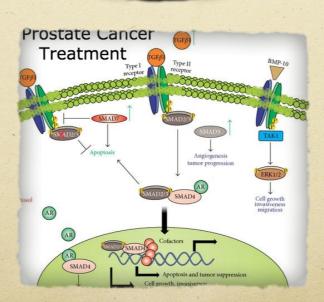
SReach

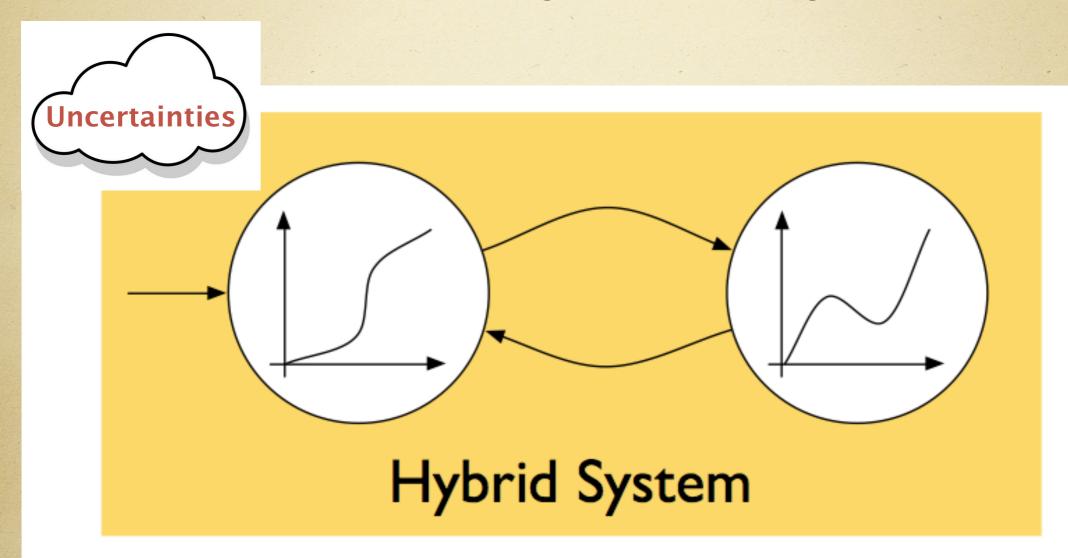
Reach

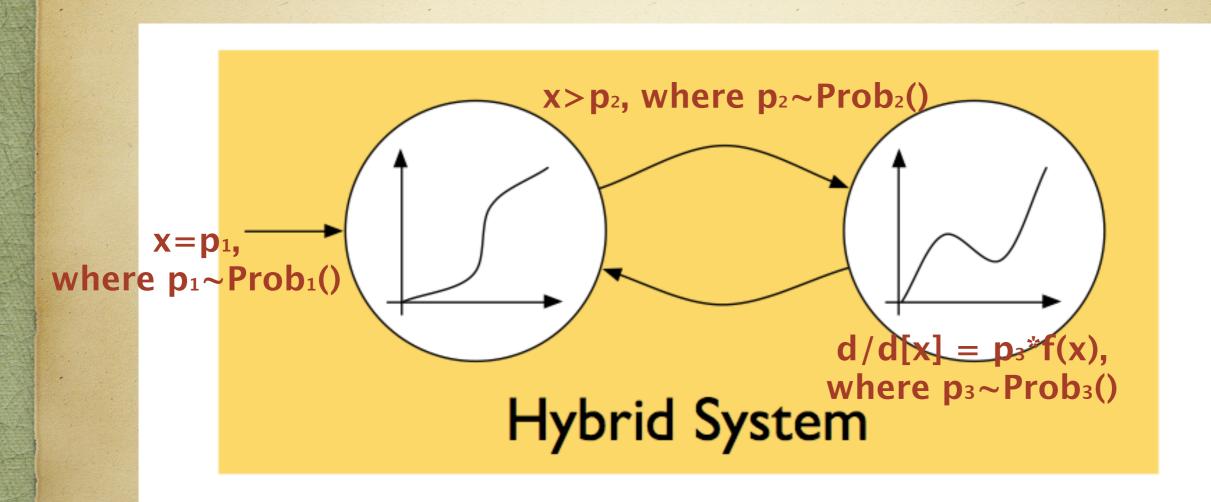

S

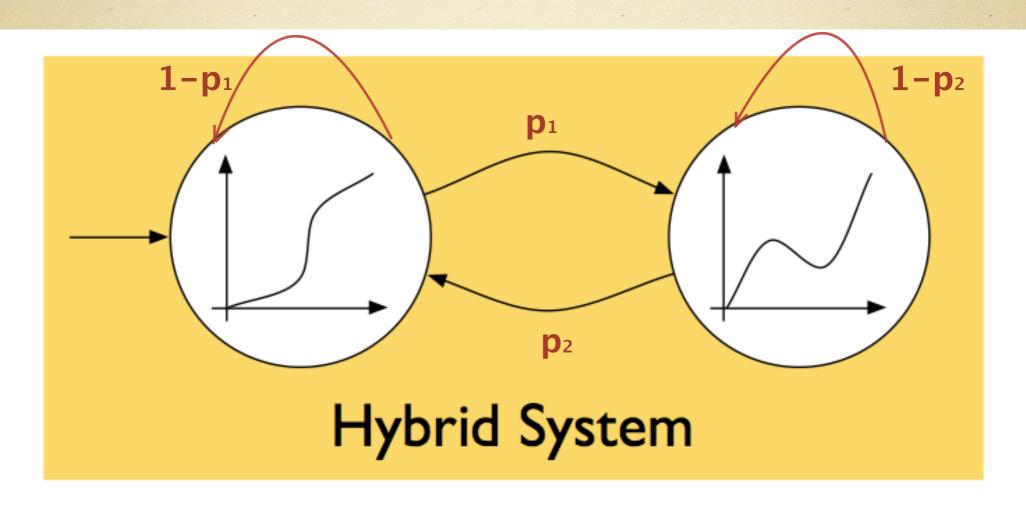

Probabilistic Bounded Reachability Analysis

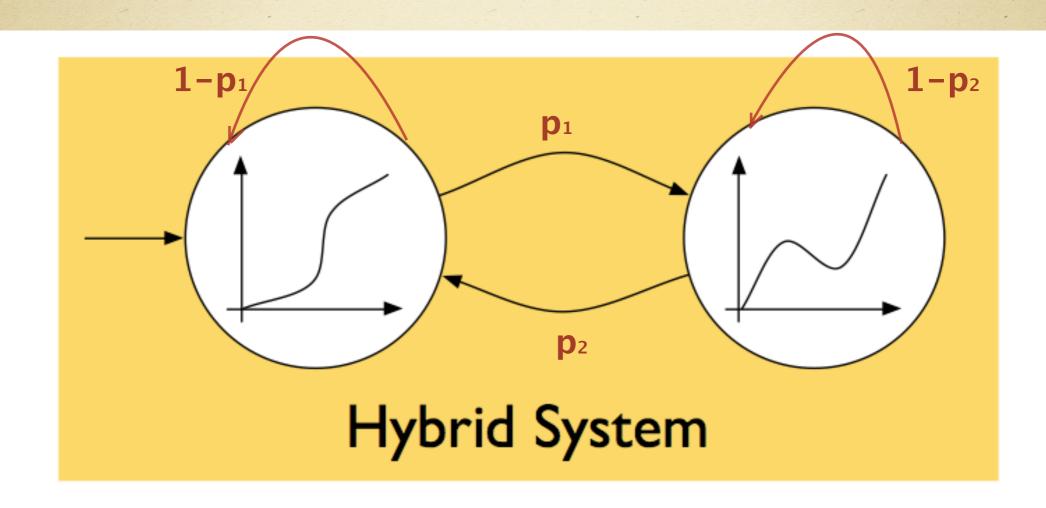
of

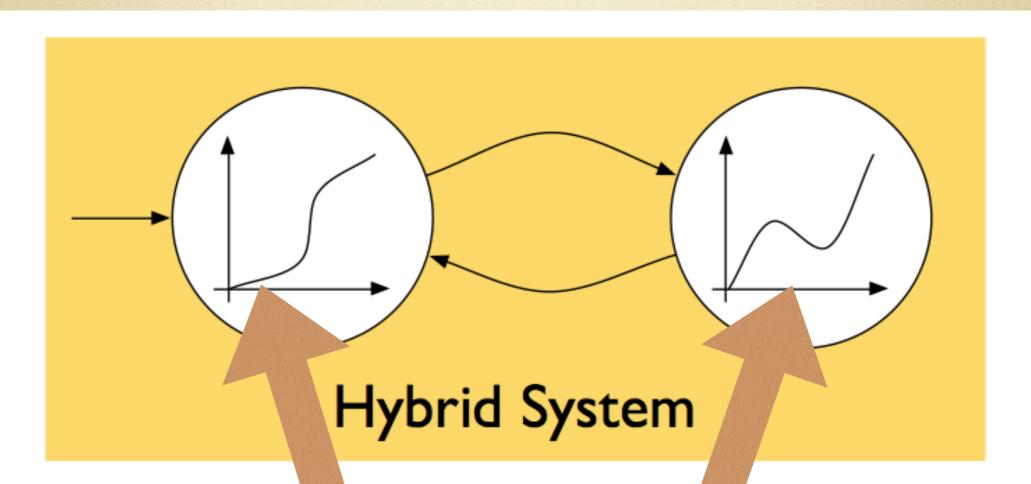

Stochastic Hybrid Systems

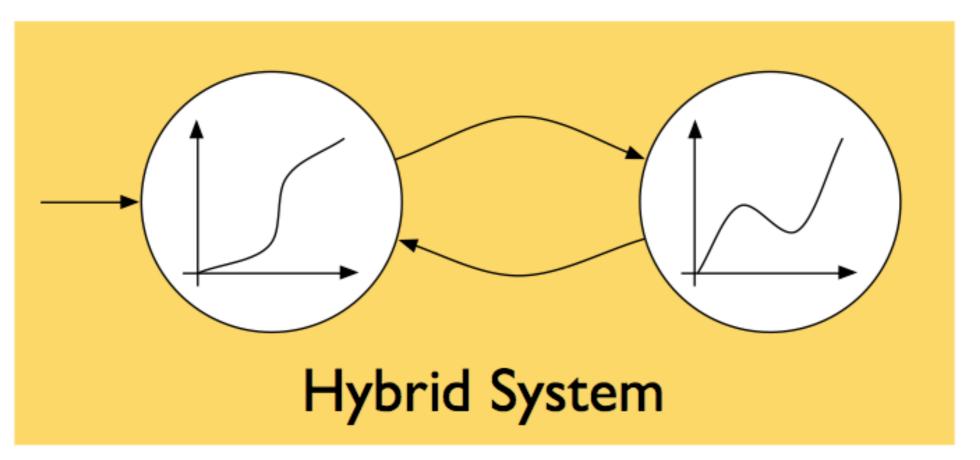



Discrete
Continuous
Stochastic




Discrete Control + Continuous Dynamics


Hybrid System with Parametric Uncertainty


p₁ and p₂ are discrete random variables: Probabilistic Hybrid Automata

When continuous distributions are also allowed:
Stochastic Hybrid Automata

$$dX_t = \mu(X_t, t) dt + \sigma(X_t, t) dB_t,$$

When all above modifications have been applied: General Stochastic Hybrid Automata

SReach considers ...

Definition 1 (HA_p). A hybrid automaton with parametric uncertainty is a tuple $H_p = \langle (Q, E), V, RV, \text{ Init, Flow, Inv, Jump, } \Sigma \rangle$, where

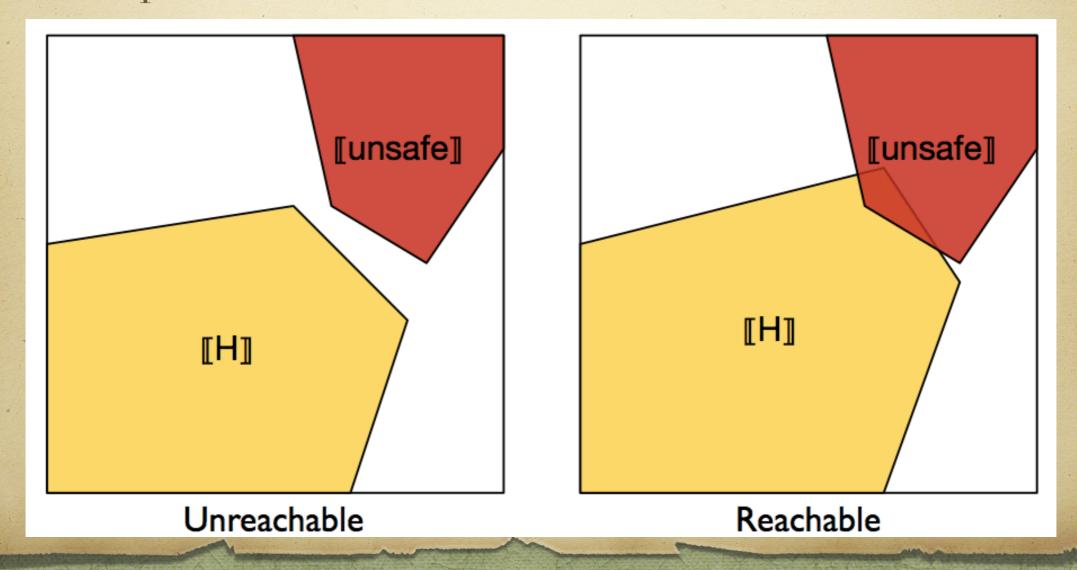
- The vertices $Q = \{q_1, \dots, q_m\}$ is a finite set of discrete modes, and edges in E are control switches.
- $-V = \{v_1, \dots, v_n\}$ denotes a finite set of real-valued system variables. We write V to represent the first derivatives of variables during the continuous change, and write V' to denote values of variables at the conclusion of the discrete change.
- $-RV = \{w_1, \dots, w_k\}$ is a finite set of independent random variables, where the distribution of w_i is denoted by P_i .
- Init, Flow, and Inv are labeling functions over Q. For each mode $q \in Q$, the initial condition Init(q) and invariant condition Inv(q) are predicates whose free variables are from $V \cup RV$, and the flow condition Flow(q) is a predicate whose free variables are from $V \cup \dot{V} \cup RV$.
- Jump is a transition labeling function that assigns to each transition $e \in E$ a predicate whose free variables are from $V \cup V' \cup RV$.
- Σ is a finite set of events, and an edge labeling function event : $E \to \Sigma$ assigns to each control switch an event.

SReach considers ...

Definition 2 (PHA_r). A probabilistic hybrid automaton with additional randomness H_r consists of Q, E, V, RV, Init, Flow, Inv, Σ as in Definition 1, and Cmds, which is a finite set of probabilistic guarded commands of the form: $g \to p_1 : u_1 + \cdots + p_m : u_m$, where g is a predicate representing a transition guard with free variables from V, p_i is the transition probability for the ith probabilistic choice which can be expressed by an equation involving random variable(s) in RV and the p_i 's satisfy $\sum_{i=1}^m p_i = 1$, and u_i is the corresponding transition updating function for the ith probabilistic choice, whose free variables are from $V \cup V' \cup RV$.

$$x \ge 5 \rightarrow p_1 : (x' = \sin(x)) + (1 - p_1) : (x' = p_x),$$

 $p_1 \sim U(0.2, 0.9), \text{ and } p_x \sim B(0.85)$

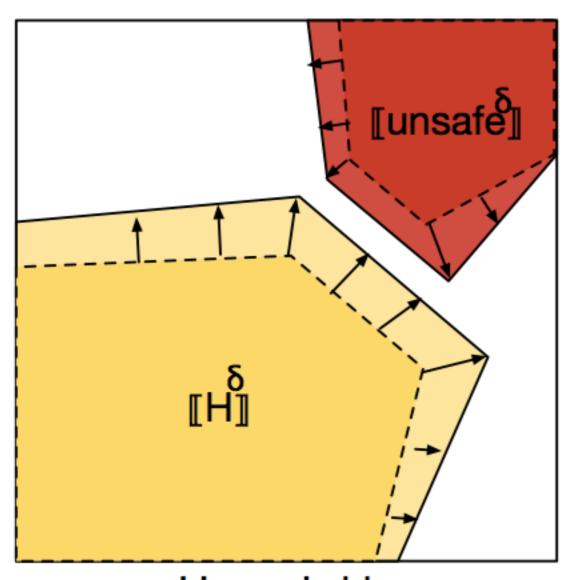

SReach can handle...

Definition 3. The probabilistic bounded k step δ -reachability for a HA_p H_p is to compute the probability that H_p reaches the target region T in k steps. Given the set of independent random variables \mathbf{r} , $Pr(\mathbf{r})$ a probability measure over \mathbf{r} , and Ω the sample space of \mathbf{r} , the reachability probability is $\int_{\Omega} I_T(\mathbf{r}) dPr(\mathbf{r})$, where $I_T(\mathbf{r})$ is the indicator function which is 1 if H_p with \mathbf{r} reaches T in k steps.

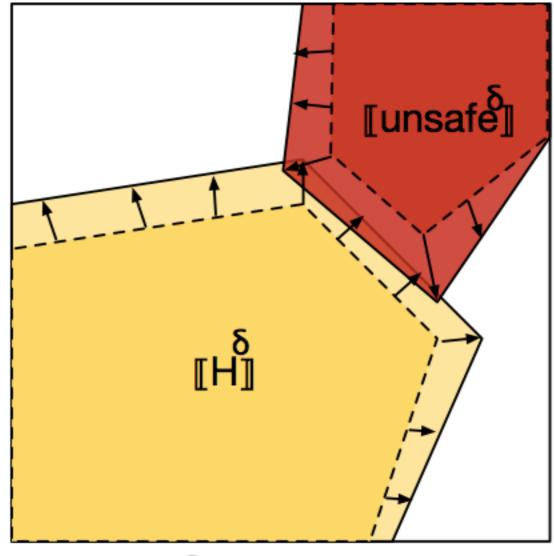
Definition 4. For a PHA_r H_r , the probabilistic bounded k step δ -reachability estimated by SReach is the maximal probability that H_r reaches the target region T in k steps: $max_{\sigma \in E} Pr_{H_r,\sigma,T}^k(i)$, where E is the set of possible executions of H starting from the initial state i, and σ is an execution in the set E.

Reachability Analysis of Hybrid Systems

Can a hybrid system H run into a goal region of its state space?



Bounded Reachability Analysis of Hybrid Systems


- The standard bounded reachability problems for simple hybrid systems are undecidable.
 - > 1. Give up
 - 2. Don't give Up
 - A. Find a decidable fragment and solve it
 - B. Use approximation

δ-Reachability Analysis of Hybrid Systems

- Solven δ ∈ Q⁺, [H⁰] and [Goal⁰] over-approximate [H] and [Goal] respectively.
- > So, the δ-reachability problem asks

Unreachable

δ-reachable

δ-Reachability Analysis of Hybrid Systems

- > Decidable for a wide range of nonlinear hybrid systems: polynomials, log, exp, trigonometric functions, ODEs ...
- > Reasonable complexity bound (PSPACE-complete)
- > When it says
 - Unreachable the answer is sound
 - δ-Reachable may lead to an infeasible counterexample,
 you may try a smaller δ and possibly get rid of it

SReach's algorithm

Algorithm 1 SReach

```
1: function SREACH(MP, ST, \delta, k)
        if MP is a HA_p then
2:
            MP \leftarrow EncRM_1(MP)
3:
                                                      > encode uncertain system parameters
                                                                           \triangleright otherwise a PHA<sub>r</sub>
 4:
        else
            MP \leftarrow EncRM_2(MP) \triangleright encode probabilistic jumps and extra randomness
 5:
        end if
6:
        Succ, N \leftarrow 0
                                               \triangleright number of \delta-sat samples and total samples
 7:
        Assgn \leftarrow \emptyset
                               > record unique sampling assignments and dReach results
8:
        RV \leftarrow \text{ExtractRV}(MP)
                                                9:
        repeat in parallel
10:
            S_i \leftarrow \text{Sim}(RV)
11:
                                                                      > sample the parameters
12:
            if S_i \in Assgn.sample then
13:
                Res \leftarrow Assgn(S_i).res
                                                                     ▷ no need to call dReach
14:
            else
15:
                M_i \leftarrow \text{Gen}(MP, S_i)

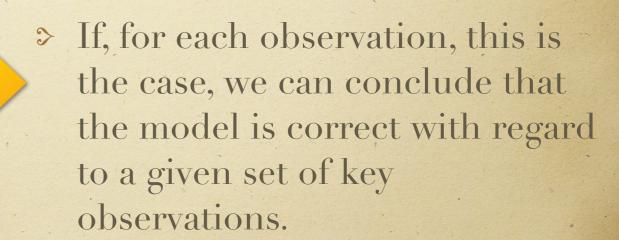
⊳ generate a dReach model

16:
                Res \leftarrow dReach(M_i, \delta, k)
                                                \triangleright call dReach to solve k-step \delta-reachability
17:
            end if
18:
            if Res = \delta-sat then Succ \leftarrow Succ + 1
19:
            end if
            N \leftarrow N + 1
20:
        until ST.done(Succ, N)
                                                                     > perform statistical test
21:
22:
        return ST.output
23: end function
```

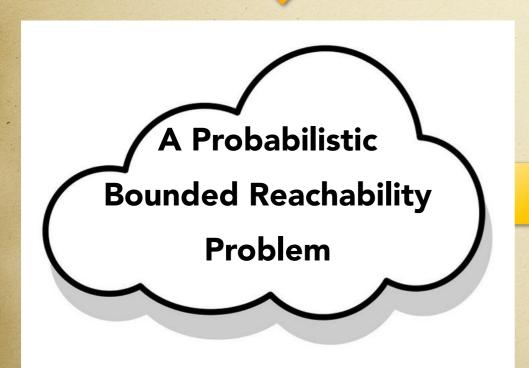
SReach's algorithm

- 3 δ-complete bounded reachability analysis technique (dReal/dReach) + statistical testing techniques
- advance the reasoning power of SMT-based bounded model checking to probabilistic models
- > the full non-determinism and nonlinear dynamics of models will be considered
- > the coverage of simulation will be increased
- the zero-crossing problem can be avoided
- controllable error bounds on the estimated probabilities

- > SReach can answer two types of questions:
 - (1) Does the model satisfy a given reachability property with probability greater than a certain threshold? hypothesis testing
 - > Hypothesis testing methods: Lai's test, Bayes factor test, Bayes factor test with indifference region, and Sequential probability ratio test.

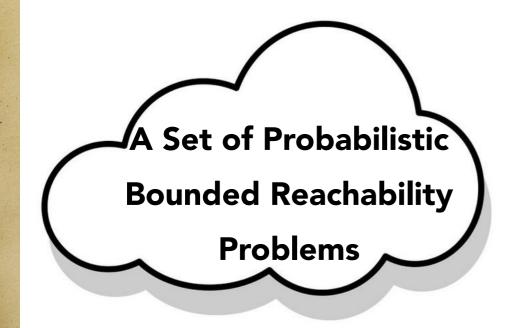

- > SReach can answer two types of questions:
 - > (2) What is the probability that the model satisfies a given reachability property? statistical estimation
 - Statistical estimation methods: Chernoff-Hoeffding bound, Bayesian interval estimation with beta prior, and Direct sampling.

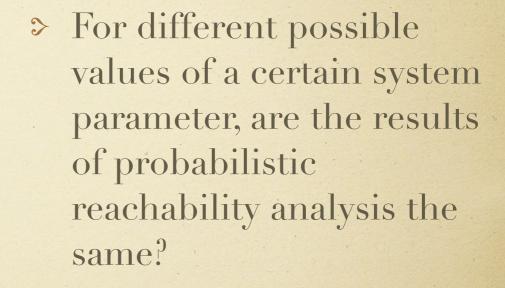
Model Falsification: whether consistent with existing key observations.

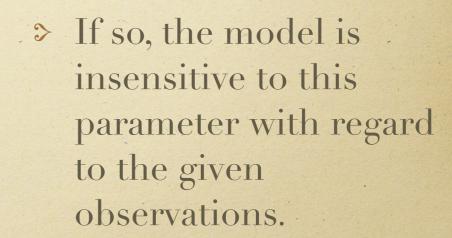

A Probabilistic
Bounded Reachability
Problem

- Expressing each observation as a goal region, will this model reach the goal region in bounded steps with the predefined desirable probability?
 - > If not, the model is incorrect regarding the given observation.

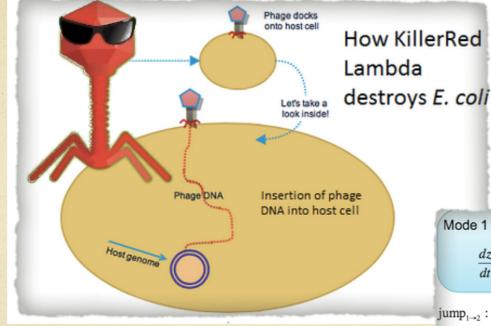
Parameter Synthesis: How to control the system to reach good states with a desirable probability?

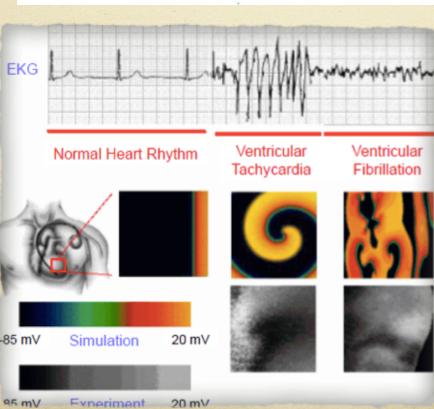


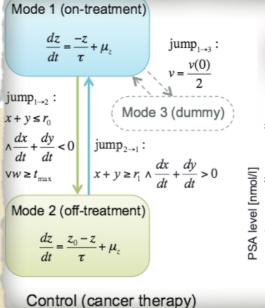


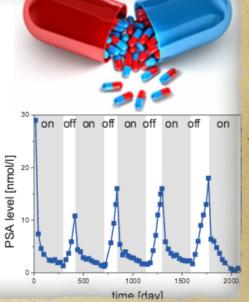

- Does it exist a parameter combination for which the model reaches the given goal region with a desirable probability in bounded steps?
- Considering an assignment of a certain set of system parameters, if a witness is returned, this assignment is potentially a good estimation for those parameters.
 - The goal here is to find an assignment with which all the given goal regions with desirable probabilities can be reached in bounded steps.

Parametric Sensitivity Analysis: Testing the robustness of the model, Understand the relationships between parameters and the model, etc.

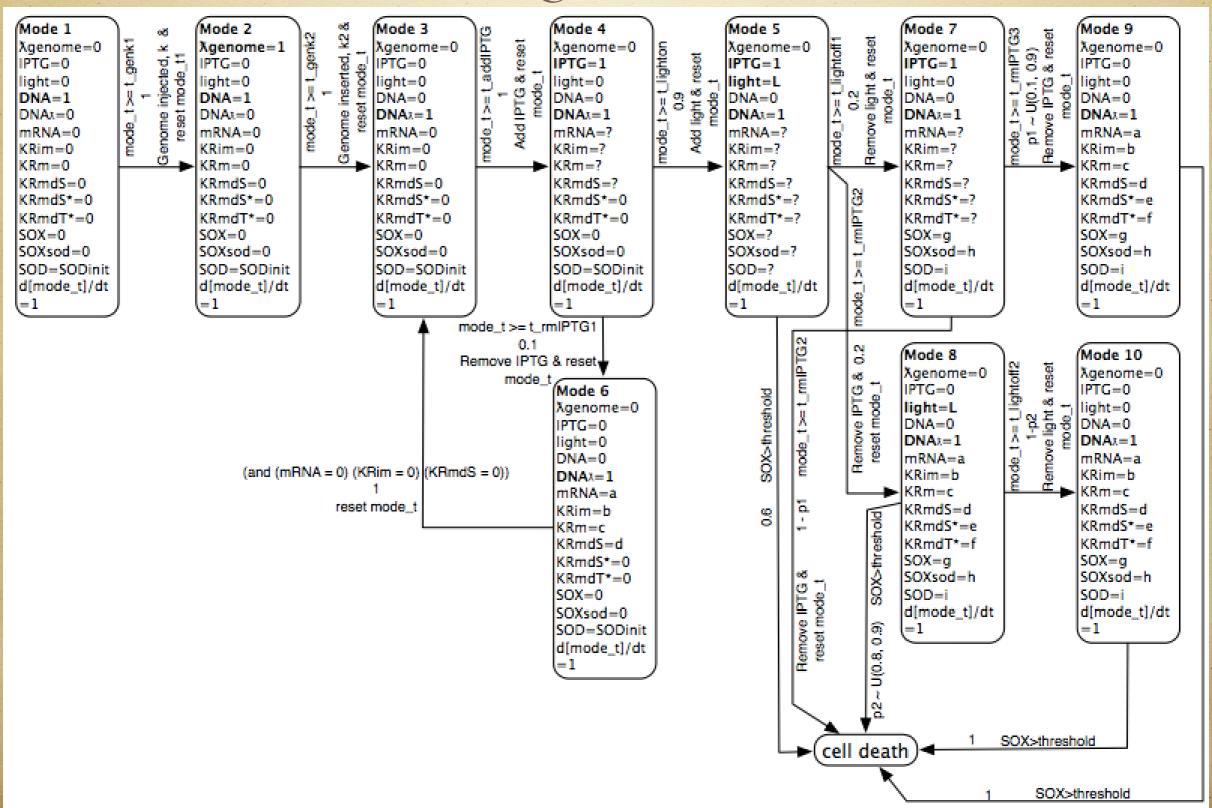







Case Studies

SReach



PROPERTY OF THE PARTY OF THE PA		
State	State description	Input
S_0	Initial system state, bacteria cell, without phage	n/a
S_1	Phage genome injected	λ -phage genome
S_2	Phage genome replication (lytic cycle)	Genome replication
S_3	Phage genome within bacterial DNA (lysogenic cycle)	Genome insertion
S_4	Gene transcription, translation	Addition of IPTG
S_5	Gene transcription decrease	Removal of IPTG
S_6	Activation of KillerRed	Light turned ON
S_7	Mixture of KillerRed forms, no activation	Light turned OFF
S_8	Mixture of KillerRed forms, transcription decrease	Removal of IPTG
S_9	Mixture of KillerRed forms, no activation, transcription decrease	Removal of IPTG
S_{10}	Mixture of KillerRed forms, transcription decrease, no activation	Light turned OFF
S_{11}	Cell death	SOX>threshold
Married Co.		

$$\frac{\mathrm{d}[mRNA]}{\mathrm{d}t} = k_{RNAsyn} \cdot [DNA] - k_{RNAdeg} \cdot [mRNA]$$

$$\frac{\mathrm{d}[KR_{im}]}{\mathrm{d}t} = k_{KR_{im}syn} \cdot [mRNA] - (k_{KR_m} + k_{KR_{im}deg})$$

$$\cdot [KR_{im}]$$

 $\frac{\mathrm{d}[KR_{mdS}]}{\mathrm{d}t} = k_{KR_m} \cdot [KR_{im}] - k_{KR_{mdS}deg} \cdot [KR_{mdS}] \quad \frac{\mathrm{d}[KR_{mdS}]}{\mathrm{d}t}$

Mode 5 |λgenome=0 |IPTG=1 light=L DNA=0DNA x = 1lmRNA=? KRim=?|KRm=?|KRmdS=?KRmdS*=?KRmdT*=?SOX=? SOXsod=? SOD=? |d[mode_t]/dt =1

$$\frac{\mathrm{d}[KR_{mdS}]}{\mathrm{d}t} = k_{KR_m} \cdot [KR_{im}] + k_{KR_f} \cdot [KR_{mdS^*}]$$

$$+k_{KR_{ic}} \cdot [KR_{mdS^*}] + k_{KR_{nrd}} \cdot [KR_{mdT^*}]$$

$$+k_{KR_{SOXd1}} \cdot [KR_{mdT^*}] - k_{KR_{ex}} \cdot [KR_{mdS}]$$

$$-k_{KR_{mdS}deg} \cdot [KR_{mdS}]$$

$$[KR_{mdS^*}]$$

$$\frac{\mathrm{d}[KR_{mdS^*}]}{\mathrm{d}t} = k_{KR_{ex}} \cdot [KR_{mdS}] - k_{KR_{f}} \cdot [KR_{mdS^*}]$$

$$-k_{KR_{ic}} \cdot [KR_{mdS^*}] - k_{KR_{isc}} \cdot [KR_{mdS^*}]$$

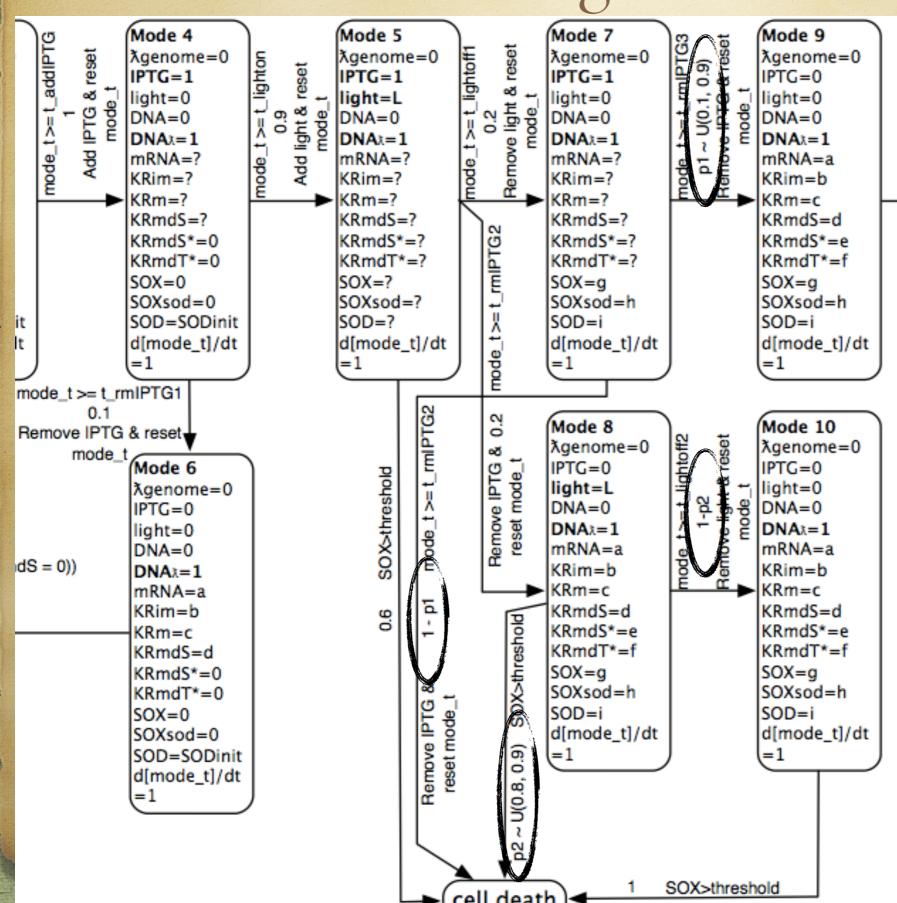
$$-k_{KR_{mdS^*}deg} \cdot [KR_{mdS^*}]$$

$$\frac{\mathrm{d}[KR_{mdT^*}]}{\mathrm{d}t} = k_{KR_{isc}} \cdot [KR_{mdS^*}] - k_{KR_{nrd}} \cdot [KR_{mdT^*}]$$

$$-k_{KR_{SOXd1}} \cdot [KR_{mdT^*}]$$


$$-k_{KR_{SOXd2}} \cdot [KR_{mdT^*}]$$

$$-k_{KR_{mdT^*}deg} \cdot [KR_{mdT^*}]$$


$$\frac{\mathrm{d}[SOX]}{\mathrm{d}t} = k_{KR_{SOXd1}} \cdot [KR_{mdT^*}] + k_{KR_{SOXd2}}$$

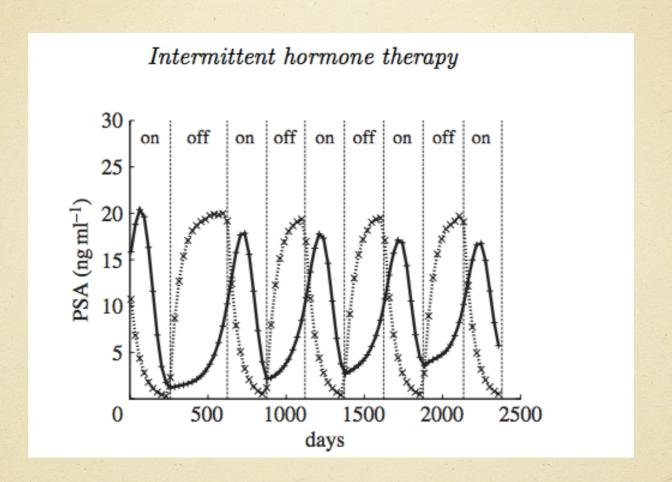
$$\cdot [KR_{mdT^*}] - \frac{\mathrm{d}[SOX_{sod}]}{\mathrm{d}t}$$

$$\frac{\mathrm{d}[SOX_{sod}]}{\mathrm{d}t} = k_{SOD} \cdot V_{maxSOD} \cdot \frac{[SOX]}{K_m + [SOX]}$$

probabilistic transitions

probabilistic
transitions
with additional
randomness

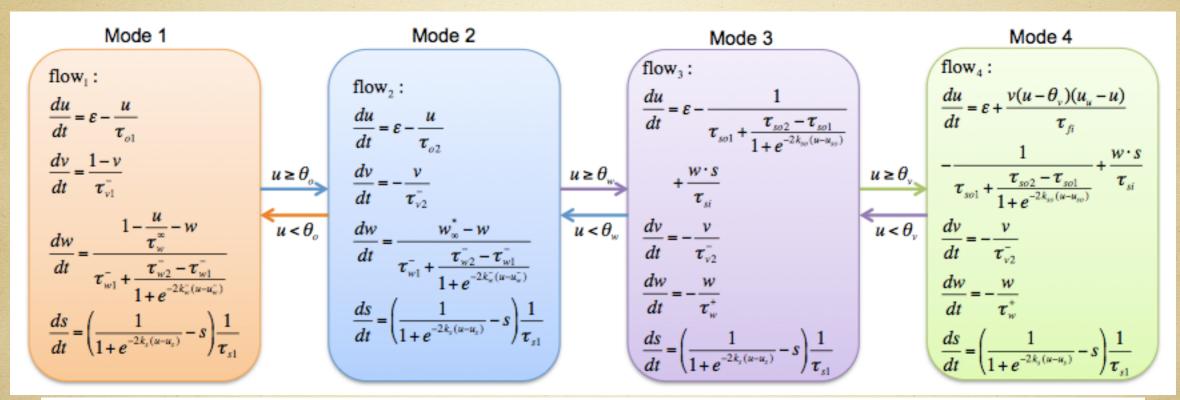
k	Est_P	#S_S	#T_S	Avg_T(s)	$Tot_{-}T(s)$	k	$\operatorname{Est}_{-}P$	#S_S	#T_S	Avg_T(s)	$\overline{\mathrm{Tot}_{ ext{-}}\mathrm{T}(\mathrm{s})}$
5	0.544	8951	16452	0.074	1219.38	8	0.004	0	240	0.004	0.88
6	0.247	3045	12336	0.969	11957.12	9	0.004	0	240	0.012	2.97
7	0.096	559	5808	5.470	31770.36	10	0.004	0	240	0.013	3.18


Table 3: Results for the 11-mode killerred model.

$t_{lightON}$ (t.u.)	1	2	3	4	5	6	7	8	9	10
t_{total} (t.u.)	16	17.2	18.5	20	21.3	22.7	23.5	24.1	25	30
$t_{lightOFF_1}$ (t.u.)	1	2	3	4	5	6	7	8	9	10
killed bacteria cells	failed	failed	failed	succ	succ	succ	succ	succ	succ	succ
t_{rmIPTG_3} (t.u.)	1	2	3	4	5	6	7	8	9	10
killed bacteria cells	succ	succ	succ	succ	succ	succ	succ	succ	succ	succ
SOX_{thres} (M)	1e-4	2e-4	3e-4	4e-4	5e-4	6e-4	7e-4	8e-4	9e-4	1e-3
t_{total} (t.u.)	5.1	5.2	5.4	17	19	48	61	71	36	42

Table 4: Formal analysis results for our KillerRed hybrid model

#S_S = number of δ -sat samples, #T_S = total number of samples, Est_P = estimated probability of property, Avg_T(s) = average CPU time of each sample in seconds, and Tot_T(s) = total CPU time for all samples in seconds.


Prostate Cancer treatment

Model	#RVs	r_0	r_1	Est_P	#S_S	#T_S	$Avg_{-}T(s)$	$\mathrm{Tot}_{-}\mathrm{T(s)}$
PCT1	6	5.0	10.0	0.496	8226	16584	0.596	9892
PCT2	6	7.0	11.0	0.994	335	336	54.307	18247
PCT3	6	10.0	15.0	0.996	240	240	506.5	121560

Table 2: Results for the 2-mode prostate cancer treatment model (k = 2). For each sample generated, SReach analyzed systems with 41 variables and 10 ODEs in the unfolded SMT formulae.

Atrial Fibrillation Model

Model	#RVs	EPI_TO1	EPI_TO2	#S_S	#T_S	Est_P	$A_{-}T(s)$	$T_{-}T(s)$
Cd_{-to1} s	1	U(6.1e-3, 7e-3)	6	240	240	0.996	0.270	64.80
Cd_{to1_uns}	1	U(5.5e-3, 5.9e-3)	6	0	240	0.004	0.042	10.08
Cd_{-to2_s}	1	400	U(0.131, 6)	240	240	0.996	0.231	55.36
$\mathrm{Cd}_{-\mathrm{to2_uns}}$	1	400	U(0.1, 0.129)	0	240	0.004	0.038	9.15
Cd_to12_s	2	N(400, 1e-4)	N(6, 1e-4)	240	240	0.996	0.091	21.87
$Cd_{to12}uns$	2	N(5.5e-3, 10e-6)	N(0.11, 10e-5)	0	240	0.004	0.037	8.90

Table 1: Results for the 4-mode atrial fibrillation model (k = 3). For each sample generated, SReach analyzed systems with 62 variables and 24 ODEs in the unfolded SMT formulae. #RVs = number of random variables in the model, $\#S_S = number$ of δ -sat samples, $\#T_S = total number of samples, <math>Est_P = estimated$ probability of property, $A_T(s) = average$ CPU time of each sample in seconds, and $T_T(s) = total$ CPU time for all samples in seconds. Note that, we use the same notations in the remaining tables.

Experimental results

Benchmark #Ms K #ODEs #Vs #RVs δ Est P #S.S #T.S A.T(s) T.T(s) BBK1 1 1 2 14 3 0.001 0.754 5372 7126 0.086 612.836 BBK5 1 5 2 38 3 0.001 0.059 209 3628 0.253 917.884 BBwDv1 2 2 4 20 4 0.001 0.208 2206 10919 0.080 873.522 BBwDv2K8 2 8 4 56 3 0.001 0.207 2259 10901 0.858 9353.058 Tld 2 7 2 33 4 0.001 0.996 227 227 0.213 48.351 Ted 2 7 4 50 4 0.001 0.996 227 227 0.213 48.351 Ted 2 7 4 50
BBK5 1 5 2 38 3 0.001 0.059 209 3628 0.253 917.884 BBwDv1 2 2 4 20 4 0.001 0.208 2206 10919 0.080 873.522 BBwDv2K2 2 2 4 20 3 0.001 0.845 7330 8669 0.209 1811.821 BBwDv2K8 2 8 4 56 3 0.001 0.207 2259 10901 0.858 9353.058 Tld 2 7 2 33 4 0.001 0.996 227 227 0.213 48.351 Ted 2 7 4 50 4 0.001 0.996 227 227 12.839 2914.448 DTldK3 2 3 4 26 2 0.001 0.996 227 227 0.382 86.714 DTldK5 2 5 4 38
BBwDv1 2 2 4 20 4 0.001 0.208 2206 10919 0.080 873.522 BBwDv2K2 2 2 4 20 3 0.001 0.845 7330 8669 0.209 1811.821 BBwDv2K8 2 8 4 56 3 0.001 0.207 2259 10901 0.858 9353.058 Tld 2 7 2 33 4 0.001 0.996 227 227 0.213 48.351 Ted 2 7 4 50 4 0.001 0.996 227 227 12.839 2914.448 DTldK3 2 3 4 26 2 0.001 0.996 227 227 0.382 86.714 DTldK3 2 5 4 38 2 0.001 0.161 1442 8961 0.280 2509.078 W4mv1 4 3 8 26
BBwDv2K2 2 2 4 20 3 0.001 0.845 7330 8669 0.209 1811.821 BBwDv2K8 2 8 4 56 3 0.001 0.207 2259 10901 0.858 9353.058 Tld 2 7 2 33 4 0.001 0.996 227 227 0.213 48.351 Ted 2 7 4 50 4 0.001 0.996 227 227 0.213 48.351 DTldK3 2 3 4 26 2 0.001 0.996 227 227 0.382 86.714 DTldK5 2 5 4 38 2 0.001 0.161 1442 8961 0.280 2509.078 W4mv1 4 3 8 26 6 0.001 0.381 5953 15639 0.238 3722.082 W4mv2K3 4 3 8 26
BBwDv2K8 2 8 4 56 3 0.001 0.207 2259 10901 0.858 9353.058 Tld 2 7 2 33 4 0.001 0.996 227 227 0.213 48.351 Ted 2 7 4 50 4 0.001 0.996 227 227 12.839 2914.448 DTldK3 2 3 4 26 2 0.001 0.996 227 227 0.382 86.714 DTldK5 2 5 4 38 2 0.001 0.161 1442 8961 0.280 2509.078 W4mv1 4 3 8 26 6 0.001 0.381 5953 15639 0.238 3722.082 W4mv2K3 4 3 8 26 6 0.001 0.996 227 227 0.673 152.771 W4mv2K7 4 7 8 50
Tld 2 7 2 33 4 0.001 0.996 227 227 0.213 48.351 Ted 2 7 4 50 4 0.001 0.996 227 227 12.839 2914.448 DTldK3 2 3 4 26 2 0.001 0.996 227 227 0.382 86.714 DTldK5 2 5 4 38 2 0.001 0.161 1442 8961 0.280 2509.078 W4mv1 4 3 8 26 6 0.001 0.381 5953 15639 0.238 3722.082 W4mv2K3 4 3 8 26 6 0.001 0.996 227 227 0.673 152.771 W4mv2K7 4 7 8 50 6 0.001 0.996 227 227 0.120 27.240 DWK1 2 1 4 14 <t< td=""></t<>
Ted 2 7 4 50 4 0.001 0.996 227 227 12.839 2914.448 DTldK3 2 3 4 26 2 0.001 0.996 227 227 0.382 86.714 DTldK5 2 5 4 38 2 0.001 0.161 1442 8961 0.280 2509.078 W4mv1 4 3 8 26 6 0.001 0.381 5953 15639 0.238 3722.082 W4mv2K3 4 3 8 26 6 0.001 0.996 227 227 0.673 152.771 W4mv2K7 4 7 8 50 6 0.001 0.094 0 227 0.120 27.240 DWK1 2 1 4 14 5 0.001 0.996 227 227 0.215 48.806 DWK9 2 9 4 62 <td< td=""></td<>
DTldK3 2 3 4 26 2 0.001 0.996 227 227 0.382 86.714 DTldK5 2 5 4 38 2 0.001 0.161 1442 8961 0.280 2509.078 W4mv1 4 3 8 26 6 0.001 0.381 5953 15639 0.238 3722.082 W4mv2K3 4 3 8 26 6 0.001 0.996 227 227 0.673 152.771 W4mv2K7 4 7 8 50 6 0.001 0.004 0 227 0.120 27.240 DWK1 2 1 4 14 5 0.001 0.996 227 227 0.171 38.817 DWK3 2 3 4 26 5 0.001 0.996 227 227 0.215 48.806 DWK9 2 9 4 62 5
DTldK5 2 5 4 38 2 0.001 0.161 1442 8961 0.280 2509.078 W4mv1 4 3 8 26 6 0.001 0.381 5953 15639 0.238 3722.082 W4mv2K3 4 3 8 26 6 0.001 0.996 227 227 0.673 152.771 W4mv2K7 4 7 8 50 6 0.001 0.004 0 227 0.120 27.240 DWK1 2 1 4 14 5 0.001 0.996 227 227 0.171 38.817 DWK3 2 3 4 26 5 0.001 0.996 227 227 0.215 48.806 DWK9 2 9 4 62 5 0.001 0.996 227 227 5.144 1167.688 Que 3 2 18 48 2
W4mv1 4 3 8 26 6 0.001 0.381 5953 15639 0.238 3722.082 W4mv2K3 4 3 8 26 6 0.001 0.996 227 227 0.673 152.771 W4mv2K7 4 7 8 50 6 0.001 0.004 0 227 0.120 27.240 DWK1 2 1 4 14 5 0.001 0.996 227 227 0.171 38.817 DWK3 2 3 4 26 5 0.001 0.996 227 227 0.215 48.806 DWK9 2 9 4 62 5 0.001 0.996 227 227 5.144 1167.688 Que 3 2 3 13 4 0.001 0.228 2662 11677 0.095 1109.315 3dOsc 3 2 18 48 2
W4mv2K3 4 3 8 26 6 0.001 0.996 227 227 0.673 152.771 W4mv2K7 4 7 8 50 6 0.001 0.004 0 227 0.120 27.240 DWK1 2 1 4 14 5 0.001 0.996 227 227 0.171 38.817 DWK3 2 3 4 26 5 0.001 0.996 227 227 0.215 48.806 DWK9 2 9 4 62 5 0.001 0.996 227 227 5.144 1167.688 Que 3 2 3 13 4 0.001 0.228 2662 11677 0.095 1109.315 3dOsc 3 2 18 48 2 0.001 0.996 227 227 825.641 187420.507
W4mv2K7 4 7 8 50 6 0.001 0.004 0 227 0.120 27.240 DWK1 2 1 4 14 5 0.001 0.996 227 227 0.171 38.817 DWK3 2 3 4 26 5 0.001 0.996 227 227 0.215 48.806 DWK9 2 9 4 62 5 0.001 0.996 227 227 5.144 1167.688 Que 3 2 3 13 4 0.001 0.228 2662 11677 0.095 1109.315 3dOsc 3 2 18 48 2 0.001 0.996 227 227 8.273 1877.969 QuadC 1 0 14 44 6 0.001 0.996 227 227 825.641 187420.507
DWK1 2 1 4 14 5 0.001 0.996 227 227 0.171 38.817 DWK3 2 3 4 26 5 0.001 0.996 227 227 0.215 48.806 DWK9 2 9 4 62 5 0.001 0.996 227 227 5.144 1167.688 Que 3 2 3 13 4 0.001 0.228 2662 11677 0.095 1109.315 3dOsc 3 2 18 48 2 0.001 0.996 227 227 8.273 1877.969 QuadC 1 0 14 44 6 0.001 0.996 227 227 825.641 187420.507
DWK3 2 3 4 26 5 0.001 0.996 227 227 0.215 48.806 DWK9 2 9 4 62 5 0.001 0.996 227 227 5.144 1167.688 Que 3 2 3 13 4 0.001 0.228 2662 11677 0.095 1109.315 3dOsc 3 2 18 48 2 0.001 0.996 227 227 8.273 1877.969 QuadC 1 0 14 44 6 0.001 0.996 227 227 825.641 187420.507
DWK9 2 9 4 62 5 0.001 0.996 227 227 5.144 1167.688 Que 3 2 3 13 4 0.001 0.228 2662 11677 0.095 1109.315 3dOsc 3 2 18 48 2 0.001 0.996 227 227 8.273 1877.969 QuadC 1 0 14 44 6 0.001 0.996 227 227 825.641 187420.507
Que 3 2 3 13 4 0.001 0.228 2662 11677 0.095 1109.315 3dOsc 3 2 18 48 2 0.001 0.996 227 227 8.273 1877.969 QuadC 1 0 14 44 6 0.001 0.996 227 227 825.641 187420.507
3dOsc 3 2 18 48 2 0.001 0.996 227 227 8.273 1877.969 QuadC 1 0 14 44 6 0.001 0.996 227 227 825.641 187420.507
QuadC 1 0 14 44 6 0.001 0.996 227 227 825.641 187420.507
exPHA01 2 2 4 20 2 0.001 0.524 345 658 5.01 3295.82
exPHA02 2 3 2 17 1 0.001 0.900 5361 5953 0.0004 2.35
KRk5 6 5 84 194 2 0.001 0.544 8946 16457 0.122 2015.64
KRk6 8 6 112 224 6 0.001 0.246 2032 8263 1.385 11444.22
KRk7 10 7 150 271 6 0.001 0.096 558 5795 16.275 94311.18
KRk8 7 8 105 303 6 0.001 0.004 0 227 0.003 0.58
KRk9 9 9 135 335 6 0.001 0.004 0 227 0.015 3.43
KRk10 11 10 165 367 6 0.001 0.004 0 227 0.026 5.92

Table 5: #Ms = number of modes, K indicates the unfolding steps, #ODEs = number of ODEs in the unfolded formulae, #Vs = number of total variables in the unfolded formulae, #RVs = number of random variables in the model, δ = precision used in dReach.

Future work

- Stochastic Hybrid Systems with stochastic flows: stochastic differential equations
 - > introduce a type of constraints for SDEs,
 - design a theory solver handling this type of constraints: reduction to PDEs, stopping time (moment generating functions), ...
 - > then integrate with dReal solver.

Thanks!

- https://github.com/dreal/SReach
- Questions?