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Multiple Time-Scales in Biological Systems

The problem — Stiffness
e Existence of fast and slow time-scales

e Challenge to mathematical and computational treatment of systems

In the literature — Abstraction techniques
e Simplify some scales of the model

e Abstractions are non-trivial and model-specific

We propose:
e Model abstraction based on statistical methodologies

e Learned abstractions automatically from (few) exploratory runs of
the models



Stochastic Simulation of Stiff Systems

The Gillespie algorithm is exact
e simulates every single reaction event

e High computational costs in presence of stiffness, where a small
number of reactions dominate computations
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Enzyme-substrate example:

E+s 1% Es A(X) = aXeXs
fo A0

)
E+S, f(X) = c2Xes

Es 2% Eip B(X) = s Xes
Assuming c1, ¢ > c3:

e too many reaction events for Ry and Ry,

e while R3 progresses very slowly



Model Reduction

Reaction partitioning into Res and Rjow:

e based on their kinetic constants

System Variables: X = (Y, Z)

Fast Variables: Y = Yi,...wYm
o Affected by either fast or slow reactions
Slow Variables: Z = Z,...,Z,

o Affected by slow reactions only
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Fast Variables: Y = Yi,...wYm
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Enzyme-substrate example:
We assume that ¢, ¢ > ¢3

e fast and slow reactions: Rps = {R1, R2} and Rgow = {R3}
o fast variables Y = (Xg, Xs, Xgs) and slow variables Z = (Xp)



The Fast Subsystem

System State Y
o Affected by either Rast or Rsjow
e Slow reactions rarely occur — can be ignored

o Fast rates may depend on the slow variables
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The Fast Subsystem

System State Y
o Affected by either Rast or Rsjow
e Slow reactions rarely occur — can be ignored

o Fast rates may depend on the slow variables

Conditional Fast subsystem:

e Parametrised by the concentration Z of slow variables
- Z=27/V in a volume V

E+s 209 g A(Y.2) = aXe(N — Xes — Xp)
es 2D Eys 6(Y.2) = coXes

Assumption: Quickly reaches equilibrium for any Z



The Slow Subsystem

System State 4
o Affected by Rsjow

e Slow rates may depend on the fast variables
- Senses the fast system only via its steady state distribution
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1. removing the fast variables

2. replacing the rate function (Y, Z) by
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Average out fast variables wrt their steady state distribution



The Slow Subsystem

System State 4
o Affected by Rsjow

e Slow rates may depend on the fast variables
- Senses the fast system only via its steady state distribution

All R; in Rsjon are modified by:
1. removing the fast variables

2. replacing the rate function (Y, Z) by
fi(2) = E:Af(Y, 2)]

Average out fast variables wrt their steady state distribution

0 29 P AE@) =ER(Y, 2]
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Simulation of the slow subsystem:
e Derive expectations 6-(2'), VR; € Rsiow

e Fast reactions are ignored
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Slow-scale Simulation

Simulation of the slow subsystem:
e Derive expectations f;-(f), VR; € Rsiow

e Fast reactions are ignored

In the literature:
° fj(f) is given by model-dependent expressions
e Applicability is limited
e Required expertise on the modeller side

A more generic approach:
e Construct a lookup table for the rate expectations
- Explore the state-space of 4
- Estimate f;(Z2) statistically

o Problem: The number of states for Z could be too large



Approximation of Rate Expectations

Theorem

The equilibrium statistics of the fast variables are a continuous function
of the slow variables (rescaled to concentrations)

Our approach:

Statistical estimate of the continuous function f(Z)

Use a few samples from the slow state-space

Interpolate via Gaussian Processes Regression

Exhaustive state-space exploration is avoided



Gaussian Process Regression

e Place a GP prior over f
p(f) = N(0, K)
e Assume noisy observationsy = f 4 ¢

p(y | £) = N(f, o))
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Gaussian Process Regression

e Place a GP prior over f

p(f) = N(0, K)
e Assume noisy observationsy = f 4 ¢

p(y | £) = N(f, o))
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Gaussian Prior Gaussian Noise

p(fly) =



Stochastic Simulation via Statistical Abstraction
The SA-SSA Approach

Initialisation Phase: For a grid of n states of the slow process:

e Calculated rate expectations:
i@ =1/ [ (V.2
to

e ty: time required to reach equilibrium (estimated by heuristic)

e Train a GP regression model



Stochastic Simulation via Statistical Abstraction
The SA-SSA Approach

Initialisation Phase: For a grid of n states of the slow process:

e Calculated rate expectations:

i@ =1/ [ (V.2
to
e ty: time required to reach equilibrium (estimated by heuristic)

e Train a GP regression model

Simulation Phase:
e Simulate the slow system (ignoring the fast variables/reactions)

e Using the rate expectations as given by the GP regression model



Cost of SA-SSA

Pre-simulation Cost (only during initialisation)
o Few samples of the slow system state-space

o Excessive simulation of the fast system is avoided

Regression Cost (only during initialisation)
o Dominated by the solution of a linear system — O(n?)

Cost of using the Analytical Approximation (during simulation)
e Produce estimation from n training points — O(n)

e For higher-dimensional slow state-spaces, sparse schemes are
necessary

Note: Can learn rate expectations as functions of the system parameters
e approximate an entire family of stiff systems



Enzyme-substrate system — Parameter exploration

Let ¢ vary in the range [0.01, 1]
e The system remains stiff
e Sampled a grid of 1000 values for Xp € [0,3000] and ¢; € [0.01,1]

Table: Relative mean error values for approximating the mean value of Xp, for
10% simulation runs.

P (RME)
Time c; =0.01 c =0.1 c1 =05 c=1

5 x 10* 1.83 x 103 9.08 x 10~ 2.35 x 103 2.17 x 103
10 x 10* 1.20 x 103 1.49 x 103 1.94 x 103 2.87 x 1073
18 x 10* 8.04 x 10—* 3.73 x 10~° 4.49 x 104 3.05 x 10~*
20 x 10% 9.13 x 10~* 456 x 10> 6.06 x 10~° 3.26 x 10~°

Gillespie algorithm: 1911 sec
SA-SSA: 32 sec + 3.562 sec for initialisation



Weinan et al 2005

Weinan E, Di Liu, and Eric Vanden-Eijnden. Nested stochastic simulation
algorithm for chemical kinetic systems with disparate rates. The Journal of
Chemical Physics, 123(19), 2005.

The Nested Stochastic Simulation Algorithm (Nested-SSA) is proposed
to approximate the steady-state of the fast subsystem

e The fast subsystem is only simulated up to a given step
e .. assuming that steady-state is reached by then

o Completely transparent wrt the slow process

We have implemented Nested-SSA, to produce comparative results

e The step parameter for Nested-SSA has been explored
experimentally such that the efficiency of both simulation
approaches has been roughly the same



Enzyme-substrate system — Accuracy results

Initial state: Xo = (Xe, Xs, Xes, Xp) = (220,3000, 0, 0).
e The rate expectation for R3 has been approximated via GP regression

e Sampled 1000 states for the slow variable P between 0 and 3000

Table: Enzyme-substrate model: histogram distances for 10° simulation runs
(estimated self-distance: 0.252).

P
Time Nested-SSA SA-SSA
5 x 10* 0.290 0.246
10 x 104 0.250 0.204
18 x 10* 1.016 0.160
20 x 10* 0.940 0.142




Viral Infection model

Reactions: Rpast = {R3, Rs} and Rgonw = {R1, Rz, R4, R}
Fast variables Y = (Xs), and slow variables Z = (Xg, X1)

0 LGN s, (Y, 2) = ks X1
) M 0, f5(Y,Z) = ks Xs
T 2D LT A =kXr
¢ 29, 7 £(Z) = ke Xc
T L@,y f2(2) = ka X7
¢ 9, v A(2) = Eplfe(V, 2)]

The rate 1?6(2’) depends on X¢ directly, and on X7 indirectly
o T affects the steady-state of the fast process



Viral Infection model — Accuracy results

Random grid of 256 uniformly distributed population values for G and T,
e given upper bounds of 500 and 100 molecules correspondingly

Naive exploration of the rate expectation would require 50000 evaluations

Table: Viral infection model: histogram distances for 10* simulation runs
(estimated self-distance: 0.252).

G T
Time Nested-SSA SA-SSA Nested-SSA SA-SSA
50 0.988 0.308 0.548 0.242
100 0.244 0.414 0.154 0.226
200 0.388 0.406 0.156 0.204
500 0.346 0.432 0.198 0.238




Viral Infection model — Accuracy results
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Efficiency results

Table: Execution times in seconds for 10% simulation runs.

Method H Enzyme-substrate Viral model
Pre-simulation 0.291 26.11
Hyperparam. opt. 1.484 1.68
SA-SSA Training 0.080 0.05
Total initialisation 1.855 27.84
Simulation 153 316
Exact SSA || 6947 2410




Conclusions

Time-scale separation

o In the literature: exploit structure to produce estimations for the
rate expectations for the slow process

e We proposed SA-SSA:
rate expectations are approximated via machine learning

o Learn the rate expectations as functions of the parameters as well
e Similar or better accuracy than Nested-SSA

Future Work
o Efficient simulation in presence of multiple spatio-temporal scales

e Abstraction of intra-cellular dynamics for cell population models
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