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Multiple Time-Scales in Biological Systems

The problem – Stiffness

• Existence of fast and slow time-scales

• Challenge to mathematical and computational treatment of systems

In the literature – Abstraction techniques

• Simplify some scales of the model

• Abstractions are non-trivial and model-specific

We propose:

• Model abstraction based on statistical methodologies

• Learned abstractions automatically from (few) exploratory runs of
the models



Stochastic Simulation of Stiff Systems

The Gillespie algorithm is exact

• simulates every single reaction event

• High computational costs in presence of stiffness, where a small
number of reactions dominate computations

Enzyme-substrate example:

E + S
f1(~X )−−−→ ES , f1(~X ) = c1XEXS

ES
f2(~X )−−−→ E + S , f2(~X ) = c2XES

ES
f3(~X )−−−→ E + P, f3(~X ) = c3XES

Assuming c1, c2 � c3:

• too many reaction events for R1 and R2,

• while R3 progresses very slowly



Stochastic Simulation of Stiff Systems

The Gillespie algorithm is exact

• simulates every single reaction event

• High computational costs in presence of stiffness, where a small
number of reactions dominate computations

Enzyme-substrate example:

E + S
f1(~X )−−−→ ES , f1(~X ) = c1XEXS

ES
f2(~X )−−−→ E + S , f2(~X ) = c2XES

ES
f3(~X )−−−→ E + P, f3(~X ) = c3XES

Assuming c1, c2 � c3:

• too many reaction events for R1 and R2,

• while R3 progresses very slowly



Model Reduction

Reaction partitioning into Rfast and Rslow :

• based on their kinetic constants

System Variables: ~X = ( ~Y , ~Z )

Fast Variables: ~Y = Y1, . . . ,Ym

• Affected by either fast or slow reactions

Slow Variables: ~Z = Z1, . . . ,Zs

• Affected by slow reactions only

Enzyme-substrate example:
We assume that c1, c2 � c3

• fast and slow reactions: Rfast = {R1,R2} and Rslow = {R3}
• fast variables ~Y = (XE ,XS ,XES) and slow variables ~Z = (XP)
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The Fast Subsystem

System State ~Y

• Affected by either Rfast or Rslow

• Slow reactions rarely occur — can be ignored

• Fast rates may depend on the slow variables

Conditional Fast subsystem:

• Parametrised by the concentration ~z of slow variables

- ~z = ~Z/V in a volume V

E + S
f1(~Y ,~z)−−−−→ ES , f1( ~Y , ~z) = c1XE (N − XES − XP)

ES
f2(~Y ,~z)−−−−→ E + S , f2( ~Y , ~z) = c2XES

Assumption: Quickly reaches equilibrium for any ~z
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The Slow Subsystem

System State ~Z

• Affected by Rslow

• Slow rates may depend on the fast variables

- Senses the fast system only via its steady state distribution

All Rj in Rslow are modified by:

1. removing the fast variables

2. replacing the rate function fj( ~Y , ~z) by:

f̂j(~z) = E|~z [fj( ~Y , ~z)]

Average out fast variables wrt their steady state distribution

∅ f̂3(~z)−−−→ P, f̂3(~z) = E|~z [f3( ~Y , ~z)]
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Slow-scale Simulation

Simulation of the slow subsystem:

• Derive expectations f̂j(~z), ∀Rj ∈ Rslow

• Fast reactions are ignored

In the literature:

• f̂j(~z) is given by model-dependent expressions

• Applicability is limited

• Required expertise on the modeller side

A more generic approach:

• Construct a lookup table for the rate expectations

- Explore the state-space of ~Z
- Estimate f̂j(~z) statistically

• Problem: The number of states for ~Z could be too large



Slow-scale Simulation

Simulation of the slow subsystem:

• Derive expectations f̂j(~z), ∀Rj ∈ Rslow

• Fast reactions are ignored

In the literature:

• f̂j(~z) is given by model-dependent expressions

• Applicability is limited

• Required expertise on the modeller side

A more generic approach:

• Construct a lookup table for the rate expectations

- Explore the state-space of ~Z
- Estimate f̂j(~z) statistically

• Problem: The number of states for ~Z could be too large



Slow-scale Simulation

Simulation of the slow subsystem:

• Derive expectations f̂j(~z), ∀Rj ∈ Rslow

• Fast reactions are ignored

In the literature:

• f̂j(~z) is given by model-dependent expressions

• Applicability is limited

• Required expertise on the modeller side

A more generic approach:

• Construct a lookup table for the rate expectations

- Explore the state-space of ~Z
- Estimate f̂j(~z) statistically

• Problem: The number of states for ~Z could be too large



Approximation of Rate Expectations

Theorem

The equilibrium statistics of the fast variables are a continuous function
of the slow variables (rescaled to concentrations)

Our approach:

• Statistical estimate of the continuous function f̂j(~z)

• Use a few samples from the slow state-space

• Interpolate via Gaussian Processes Regression

• Exhaustive state-space exploration is avoided



Gaussian Process Regression
• Place a GP prior over f

p(f) = N (0,K )

• Assume noisy observations y = f + ε

p(y | f) = N (f, σ2I )

p(f | y) =
1

Z
p(f)︸︷︷︸

Gaussian Prior

p(y | f)︸ ︷︷ ︸
Gaussian Noise
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Stochastic Simulation via Statistical Abstraction
The SA-SSA Approach

Initialisation Phase: For a grid of n states of the slow process:

• Calculated rate expectations:

f̂j(~z) = 1/tf

∫ t0+tf

t0

fj( ~Y , ~z)dt

• t0: time required to reach equilibrium (estimated by heuristic)

• Train a GP regression model

Simulation Phase:

• Simulate the slow system (ignoring the fast variables/reactions)

• Using the rate expectations as given by the GP regression model
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Cost of SA-SSA

Pre-simulation Cost (only during initialisation)

• Few samples of the slow system state-space

• Excessive simulation of the fast system is avoided

Regression Cost (only during initialisation)

• Dominated by the solution of a linear system — O(n2)

Cost of using the Analytical Approximation (during simulation)

• Produce estimation from n training points — O(n)

• For higher-dimensional slow state-spaces, sparse schemes are
necessary

Note: Can learn rate expectations as functions of the system parameters

• approximate an entire family of stiff systems



Enzyme-substrate system — Parameter exploration

Let c1 vary in the range [0.01, 1]

• The system remains stiff

• Sampled a grid of 1000 values for XP ∈ [0, 3000] and c1 ∈ [0.01, 1]

Table: Relative mean error values for approximating the mean value of XP , for
103 simulation runs.

P (RME)

Time c1 = 0.01 c1 = 0.1 c1 = 0.5 c1 = 1

5× 104 1.83× 10−3 9.08× 10−4 2.35× 10−3 2.17× 10−3

10× 104 1.20× 10−3 1.49× 10−3 1.94× 10−3 2.87× 10−3

18× 104 8.04× 10−4 3.73× 10−5 4.49× 10−4 3.05× 10−4

20× 104 9.13× 10−4 4.56× 10−5 6.06× 10−5 3.26× 10−5

Gillespie algorithm: 1911 sec
SA-SSA: 32 sec + 3.562 sec for initialisation



Weinan et al 2005

Weinan E, Di Liu, and Eric Vanden-Eijnden. Nested stochastic simulation

algorithm for chemical kinetic systems with disparate rates. The Journal of

Chemical Physics, 123(19), 2005.

The Nested Stochastic Simulation Algorithm (Nested-SSA) is proposed
to approximate the steady-state of the fast subsystem

• The fast subsystem is only simulated up to a given step
• .. assuming that steady-state is reached by then

• Completely transparent wrt the slow process

We have implemented Nested-SSA, to produce comparative results

• The step parameter for Nested-SSA has been explored
experimentally such that the efficiency of both simulation
approaches has been roughly the same



Enzyme-substrate system — Accuracy results

Initial state: ~X0 = (XE ,XS ,XES ,XP) = (220, 3000, 0, 0).

• The rate expectation for R3 has been approximated via GP regression

• Sampled 1000 states for the slow variable P between 0 and 3000

Table: Enzyme-substrate model: histogram distances for 103 simulation runs
(estimated self-distance: 0.252).

P

Time Nested-SSA SA-SSA

5× 104 0.290 0.246

10× 104 0.250 0.204

18× 104 1.016 0.160

20× 104 0.940 0.142



Viral Infection model

Reactions: Rfast = {R3,R5} and Rslow = {R1,R2,R4,R6}

Fast variables ~Y = (XS), and slow variables ~Z = (XG ,XT )

∅ f3(~Y ,~z)−−−−→ S, f3(~Y , ~z) = k3XT

S
f5(~Y ,~z)−−−−→ ∅, f5(~Y , ~z) = k5XS

T
f1(~z)−−−→ G + T , f1(~z) = k1XT

G
f2(~z)−−−→ T , f2(~z) = k2XG

T
f4(~z)−−−→ ∅, f4(~z) = k4XT

G
f̂6(~z)−−−→ V , f̂6(~z) = E|~z [f6(~Y , ~z)]

The rate f̂6(~z) depends on XG directly, and on XT indirectly

• T affects the steady-state of the fast process



Viral Infection model — Accuracy results

Random grid of 256 uniformly distributed population values for G and T ,

• given upper bounds of 500 and 100 molecules correspondingly

Näıve exploration of the rate expectation would require 50000 evaluations

Table: Viral infection model: histogram distances for 103 simulation runs
(estimated self-distance: 0.252).

G T

Time Nested-SSA SA-SSA Nested-SSA SA-SSA

50 0.988 0.308 0.548 0.242

100 0.244 0.414 0.154 0.226

200 0.388 0.406 0.156 0.204

500 0.346 0.432 0.198 0.238



Viral Infection model — Accuracy results

Distribution of XG at t = 50
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Efficiency results

Table: Execution times in seconds for 103 simulation runs.

Method Enzyme-substrate Viral model

SA-SSA

Pre-simulation 0.291 26.11

Hyperparam. opt. 1.484 1.68

Training 0.080 0.05

Total initialisation 1.855 27.84

Simulation 153 316

Exact SSA 6947 2410



Conclusions

Time-scale separation

• In the literature: exploit structure to produce estimations for the
rate expectations for the slow process

• We proposed SA-SSA:
rate expectations are approximated via machine learning

• Learn the rate expectations as functions of the parameters as well

• Similar or better accuracy than Nested-SSA

Future Work

• Efficient simulation in presence of multiple spatio-temporal scales

• Abstraction of intra-cellular dynamics for cell population models
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