Efficient stochastic simulation of systems with multiple time scales via statistical abstraction

Luca Bortolussi¹²³ Dimitrios Milios⁴ Guido Sanguinetti⁴⁵

Modelling and Simulation Group, University of Saarland, Germany

Department of Mathematics and Geosciences, University of Trieste

CNR/ISTI, Pisa, Italy

School of Informatics, University of Edinburgh

SynthSys, Centre for Synthetic and Systems Biology, University of Edinburgh

16th of September 2015 Computational Methods in Systems Biology

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Multiple Time-Scales in Biological Systems

The problem – Stiffness

- Existence of fast and slow time-scales
- Challenge to mathematical and computational treatment of systems

In the literature – Abstraction techniques

- Simplify some scales of the model
- Abstractions are non-trivial and model-specific

We propose:

- Model abstraction based on statistical methodologies
- Learned abstractions automatically from (few) exploratory runs of the models

Stochastic Simulation of Stiff Systems

The Gillespie algorithm is exact

- simulates every single reaction event
- High computational costs in presence of stiffness, where a small number of reactions dominate computations

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Stochastic Simulation of Stiff Systems

The Gillespie algorithm is exact

- simulates every single reaction event
- High computational costs in presence of stiffness, where a small number of reactions dominate computations

Enzyme-substrate example:

$$E + S \xrightarrow{f_1(\vec{X})} ES, \qquad f_1(\vec{X}) = c_1 X_E X_S$$
$$ES \xrightarrow{f_2(\vec{X})} E + S, \qquad f_2(\vec{X}) = c_2 X_{ES}$$
$$ES \xrightarrow{f_3(\vec{X})} E + P, \qquad f_3(\vec{X}) = c_3 X_{ES}$$

Assuming $c_1, c_2 \gg c_3$:

- too many reaction events for R_1 and R_2 ,
- while R₃ progresses very slowly

Model Reduction

Reaction partitioning into \mathcal{R}_{fast} and \mathcal{R}_{slow} :

• based on their kinetic constants

System Variables: $\vec{X} = (\vec{Y}, \vec{Z})$

Fast Variables: $\vec{Y} = Y_1, \dots, Y_m$

Affected by either fast or slow reactions

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Slow Variables: $\vec{Z} = Z_1, \ldots, Z_s$

Affected by slow reactions only

Model Reduction

Reaction partitioning into \mathcal{R}_{fast} and \mathcal{R}_{slow} :

based on their kinetic constants

System Variables: $\vec{X} = (\vec{Y}, \vec{Z})$

Fast Variables: $\vec{Y} = Y_1, \ldots, Y_m$

Affected by either fast or slow reactions

Slow Variables: $\vec{Z} = Z_1, \ldots, Z_s$

Affected by slow reactions only

Enzyme-substrate example:

We assume that $c_1, c_2 \gg c_3$

- fast and slow reactions: $\mathcal{R}_{fast} = \{R_1, R_2\}$ and $\mathcal{R}_{slow} = \{R_3\}$
- fast variables $\vec{Y} = (X_E, X_S, X_{ES})$ and slow variables $\vec{Z} = (X_P)$

The Fast Subsystem

System State \vec{Y}

- Affected by either $\mathcal{R}_{\textit{fast}}$ or $\mathcal{R}_{\textit{slow}}$
- Slow reactions rarely occur can be ignored

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

· Fast rates may depend on the slow variables

The Fast Subsystem

System State \vec{Y}

- Affected by either $\mathcal{R}_{\textit{fast}}$ or $\mathcal{R}_{\textit{slow}}$
- Slow reactions rarely occur can be ignored
- · Fast rates may depend on the slow variables

Conditional Fast subsystem:

• Parametrised by the concentration \vec{z} of slow variables - $\vec{z} = \vec{Z}/V$ in a volume V

The Fast Subsystem

System State \vec{Y}

- Affected by either \mathcal{R}_{fast} or \mathcal{R}_{slow}
- Slow reactions rarely occur can be ignored
- · Fast rates may depend on the slow variables

Conditional Fast subsystem:

• Parametrised by the concentration \vec{z} of slow variables - $\vec{z} = \vec{Z}/V$ in a volume V

$$E + S \xrightarrow{f_1(Y,\vec{z})} ES, \qquad f_1(\vec{Y},\vec{z}) = c_1 X_E (N - X_{ES} - X_P)$$
$$ES \xrightarrow{f_2(\vec{Y},\vec{z})} E + S, \qquad f_2(\vec{Y},\vec{z}) = c_2 X_{ES}$$

Assumption: Quickly reaches equilibrium for any \vec{z}

The Slow Subsystem

System State \vec{Z}

- Affected by $\mathcal{R}_{\textit{slow}}$
- Slow rates may depend on the fast variables
 - Senses the fast system only via its steady state distribution

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Slow Subsystem

System State \vec{Z}

- Affected by $\mathcal{R}_{\textit{slow}}$
- Slow rates may depend on the fast variables
 - Senses the fast system only via its steady state distribution
- All R_j in \mathcal{R}_{slow} are modified by:
 - 1. removing the fast variables
 - 2. replacing the rate function $f_j(\vec{Y}, \vec{z})$ by:

$$\hat{f}_j(\vec{z}) = \mathbb{E}_{|\vec{z}|}[f_j(\vec{Y}, \vec{z})]$$

Average out fast variables wrt their steady state distribution

The Slow Subsystem

System State \vec{Z}

- Affected by $\mathcal{R}_{\textit{slow}}$
- Slow rates may depend on the fast variables
 - Senses the fast system only via its steady state distribution
- All R_j in \mathcal{R}_{slow} are modified by:
 - 1. removing the fast variables
 - 2. replacing the rate function $f_j(\vec{Y}, \vec{z})$ by:

$$\hat{f}_j(\vec{z}) = \mathbb{E}_{|\vec{z}|}[f_j(\vec{Y}, \vec{z})]$$

Average out fast variables wrt their steady state distribution

$$\emptyset \quad \stackrel{\hat{f}_3(\vec{z})}{\longrightarrow} \quad P, \qquad \hat{f}_3(\vec{z}) = \mathbb{E}_{|\vec{z}|}[f_3(\vec{Y}, \vec{z})]$$

Slow-scale Simulation

Simulation of the slow subsystem:

• Derive expectations $\hat{f}_j(ec{z}), \quad orall R_j \in \mathcal{R}_{slow}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Fast reactions are ignored

Slow-scale Simulation

Simulation of the slow subsystem:

- Derive expectations $\hat{f}_j(ec{z}), \quad orall R_j \in \mathcal{R}_{slow}$
- Fast reactions are ignored

In the literature:

• $\hat{f}_j(\vec{z})$ is given by model-dependent expressions

- Applicability is limited
- Required expertise on the modeller side

Slow-scale Simulation

Simulation of the slow subsystem:

- Derive expectations $\hat{f}_j(ec{z}), \quad orall R_j \in \mathcal{R}_{slow}$
- Fast reactions are ignored

In the literature:

- $\hat{f}_j(\vec{z})$ is given by model-dependent expressions
- Applicability is limited
- Required expertise on the modeller side

A more generic approach:

- Construct a lookup table for the rate expectations
 - Explore the state-space of \vec{Z}
 - Estimate $\hat{f}_j(\vec{z})$ statistically
- **Problem**: The number of states for \vec{Z} could be too large

Approximation of Rate Expectations

Theorem

The equilibrium statistics of the fast variables are a continuous function of the slow variables (rescaled to concentrations)

Our approach:

- Statistical estimate of the continuous function $\hat{f}_j(\vec{z})$
- Use a few samples from the slow state-space
- Interpolate via Gaussian Processes Regression
- Exhaustive state-space exploration is avoided

Gaussian Process Regression

• Place a GP prior over f

$$p(\mathbf{f}) = \mathcal{N}(0, K)$$

• Assume noisy observations $\mathbf{y} = \mathbf{f} + \boldsymbol{\epsilon}$

$$p(\mathbf{y} \mid \mathbf{f}) = \mathcal{N}(\mathbf{f}, \sigma^2 I)$$

Gaussian Process Regression

• Place a GP prior over f

$$p(\mathbf{f}) = \mathcal{N}(\mathbf{0}, K)$$

• Assume noisy observations $\mathbf{y} = \mathbf{f} + \epsilon$

$$p(\mathbf{y} \mid \mathbf{f}) = \mathcal{N}(\mathbf{f}, \sigma^2 I)$$

$$p(\mathbf{f} \mid \mathbf{y}) = \frac{1}{Z}$$
 $p(\mathbf{f})$ $p(\mathbf{y} \mid \mathbf{f})$

Gaussian Prior Gaussian Noise

э

Stochastic Simulation via Statistical Abstraction

The SA-SSA Approach

Initialisation Phase: For a grid of *n* states of the slow process:

• Calculated rate expectations:

$$\hat{f}_{j}(\vec{z}) = 1/t_{f} \int_{t_{0}}^{t_{0}+t_{f}} f_{j}(\vec{Y},\vec{z}) dt$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- *t*₀: time required to reach equilibrium (estimated by heuristic)
- Train a GP regression model

Stochastic Simulation via Statistical Abstraction

The SA-SSA Approach

Initialisation Phase: For a grid of *n* states of the slow process:

• Calculated rate expectations:

$$\hat{f}_{j}(\vec{z}) = 1/t_{f} \int_{t_{0}}^{t_{0}+t_{f}} f_{j}(\vec{Y},\vec{z}) dt$$

- *t*₀: time required to reach equilibrium (estimated by heuristic)
- Train a GP regression model

Simulation Phase:

- Simulate the slow system (ignoring the fast variables/reactions)
- Using the rate expectations as given by the GP regression model

Cost of SA-SSA

Pre-simulation Cost (only during initialisation)

- Few samples of the slow system state-space
- Excessive simulation of the fast system is avoided

Regression Cost (only during initialisation)

• Dominated by the solution of a linear system — $O(n^2)$

Cost of using the Analytical Approximation (during simulation)

- Produce estimation from n training points O(n)
- For higher-dimensional slow state-spaces, sparse schemes are necessary

Note: Can learn rate expectations as functions of the system parameters

• approximate an entire family of stiff systems

Enzyme-substrate system — Parameter exploration

Let c_1 vary in the range [0.01, 1]

- The system remains stiff
- Sampled a grid of 1000 values for $X_P \in [0, 3000]$ and $c_1 \in [0.01, 1]$

Table: Relative mean error values for approximating the mean value of X_P , for 10^3 simulation runs.

	P (RME)			
Time	$c_1 = 0.01$	$c_1 = 0.1$	$c_1 = 0.5$	$c_1 = 1$
$5 imes 10^4$	$1.83 imes 10^{-3}$	$9.08 imes10^{-4}$	$2.35 imes10^{-3}$	$2.17 imes10^{-3}$
$10 imes10^4$	$1.20 imes10^{-3}$	$1.49 imes10^{-3}$	$1.94 imes10^{-3}$	$2.87 imes10^{-3}$
$18 imes10^4$	$8.04 imes10^{-4}$	$3.73 imes10^{-5}$	$4.49 imes10^{-4}$	$3.05 imes10^{-4}$
$20 imes10^4$	$9.13 imes10^{-4}$	$4.56 imes10^{-5}$	$6.06 imes10^{-5}$	$3.26 imes10^{-5}$

Gillespie algorithm: 1911 sec **SA-SSA:** 32 sec + 3.562 sec for initialisation

Weinan et al 2005

Weinan E, Di Liu, and Eric Vanden-Eijnden. Nested stochastic simulation algorithm for chemical kinetic systems with disparate rates. *The Journal of Chemical Physics*, 123(19), 2005.

The *Nested Stochastic Simulation Algorithm* (Nested-SSA) is proposed to approximate the steady-state of the fast subsystem

- The fast subsystem is only simulated up to a given step
 - .. assuming that steady-state is reached by then
- Completely transparent wrt the slow process

We have implemented Nested-SSA, to produce comparative results

• The step parameter for Nested-SSA has been explored experimentally such that the efficiency of both simulation approaches has been roughly the same

Enzyme-substrate system — Accuracy results

Initial state: $\vec{X}_0 = (X_E, X_S, X_{ES}, X_P) = (220, 3000, 0, 0).$

- The rate expectation for R_3 has been approximated via GP regression
- Sampled 1000 states for the slow variable P between 0 and 3000

Table: Enzyme-substrate model: histogram distances for 10³ simulation runs (estimated self-distance: 0.252).

	Р	
Time	Nested-SSA	SA-SSA
$5 imes 10^4$	0.290	0.246
$10 imes 10^4$	0.250	0.204
$18 imes 10^4$	1.016	0.160
$20 imes10^4$	0.940	0.142

Viral Infection model

Reactions: $\mathcal{R}_{fast} = \{R_3, R_5\}$ and $\mathcal{R}_{slow} = \{R_1, R_2, R_4, R_6\}$ Fast variables $\vec{Y} = (X_S)$, and slow variables $\vec{Z} = (X_G, X_T)$

$$\begin{array}{l} \emptyset & \xrightarrow{f_3(\vec{Y},\vec{z})} & S, \qquad f_3(\vec{Y},\vec{z}) = k_3 X_T \\ S & \xrightarrow{f_5(\vec{Y},\vec{z})} & \emptyset, \qquad f_5(\vec{Y},\vec{z}) = k_5 X_S \end{array}$$

$$\begin{array}{ll} T & \frac{f_1(\vec{z})}{f_2(\vec{z})} & G+T, & f_1(\vec{z}) = k_1 X_T \\ G & \frac{f_2(\vec{z})}{f_2} & T, & f_2(\vec{z}) = k_2 X_G \\ T & \frac{f_4(\vec{z})}{f_2} & \emptyset, & f_4(\vec{z}) = k_4 X_T \\ G & \frac{\hat{f}_6(\vec{z})}{f_2} & V, & \hat{f}_6(\vec{z}) = \mathbb{E}_{|\vec{z}|} [f_6(\vec{Y}, \vec{z})] \end{array}$$

The rate $\hat{f}_6(\vec{z})$ depends on X_G directly, and on X_T indirectly

• T affects the steady-state of the fast process

Viral Infection model — Accuracy results

Random grid of 256 uniformly distributed population values for G and T,

• given upper bounds of 500 and 100 molecules correspondingly Naïve exploration of the rate expectation would require 50000 evaluations

Table: Viral infection model: histogram distances for 10³ simulation runs (estimated self-distance: 0.252).

	G		Т	
Time	Nested-SSA	SA-SSA	Nested-SSA	SA-SSA
50	0.988	0.308	0.548	0.242
100	0.244	0.414	0.154	0.226
200	0.388	0.406	0.156	0.204
500	0.346	0.432	0.198	0.238

Viral Infection model — Accuracy results

Distribution of X_G at t = 50

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Method		Enzyme-substrate	Viral model
SA-SSA	Pre-simulation	0.291	26.11
	Hyperparam. opt.	1.484	1.68
	Training	0.080	0.05
	Total initialisation	1.855	27.84
	Simulation	153	316
Exact SSA		6947	2410

(ロ)、(型)、(E)、(E)、 E) の(の)

Table: Execution times in seconds for 10³ simulation runs.

Conclusions

Time-scale separation

- In the literature: exploit structure to produce estimations for the rate expectations for the slow process
- We proposed SA-SSA: rate expectations are approximated via machine learning
- Learn the rate expectations as functions of the parameters as well
- Similar or better accuracy than Nested-SSA

Future Work

- Efficient simulation in presence of multiple spatio-temporal scales
- Abstraction of intra-cellular dynamics for cell population models

Acknowledgements...

▲□▶ ▲□▶ ▲注▶ ▲注▶ 三注 - のへ⊙