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Figure 2.1: Measurement data at the single-cell level adopted from Hasenauer (2013): (A) Il-
lustration of single-cell snapshot data of some measurement y. (B) Illustration of
single-cell time-lapse data for five individual cells.

of molecules the system can be described by its average behavior. This can be modeled in
a deterministic way by first order ordinary differential equations (ODEs) describing the
evolution of concentrations of the species.

2.2.1 Stochastic chemical kinetics

Stochastic models are mostly used to describe a biological process, when it is important
to consider that molecules only appear in whole numbers (Wilkinson, 2009; Resat et al.,
2009). This discreteness yields a stochasticity in the dynamics of the molecules and espe-
cially has to be taken into account if only few numbers of molecules are present.

Stochastic chemical kinetics describe the time evolution of a chemical system consist-
ing of L chemical species x1, . . . , xL that interact inside a volume Ω through M reactions
R1, . . . , RM . A reaction Rj has the form

ν−
1jx1 + . . .+ ν−

LjxL
kj−→ ν+

1jx1 + . . .+ ν+
LjxL,

with stochiometric coefficients ν+
ij , ν

−
ij ∈ N0 and reaction rate kj. A state of the system

is represented by a vector x(t) ∈ NL
0 . Each entry of the vector contains the number of

molecules of the corresponding species. The stochiometric matrix S = (s1, . . . , sM) ∈
RL×M is defined by {Sij} =

{
ν+
ij − ν−

ij

}
:= {νij}. Each entry of the matrix describes the

change in the number of molecules of species xi due to a reaction of type j, i.e., the state
x changes to x+sj after reaction Rj took place. The probability that reaction Rj happens
in the next infinitesimal time interval [t, t+dt) is aj(x)dt, with propensity function aj(x).

Several assumptions are made when deriving a model of a biological process, e.g. that the
system has a constant volume Ω and is well-stirred, i.e., the probability of some molecules
of a species being in one particular region is uniform over the volume. We consider uni-
molecular reactions, in which just a single molecule is necessary to conduct the reaction,
and bimolecular reactions, for which two molecules need to collide. Higher order reactions
can easily be integrated into the methods proposed in this thesis.
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ȳ

General idea: 

Derive model M with parameters    and fit it to data D by e.g. 
maximizing the likelihood function or sampling from the posterior 
distribution p(  |D)

• D: Single-cell time-series 



  Parameter inference for single-cell time-lapse data

4

p(θ)
θ
p(θ|D)

p(θ)
θ
p(θ|D)

1 Gillespie, Annual Review of Physical Chemistry (2007)

1

x1, . . . ,xn
y1, . . . ,ym
∥xT

i yj∥
k(xi,yj )
ȳ (t i )
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Goal: Approximate posterior distribution of     given data D 
p(θ)
θ
p(θ|D)

Approximate Bayesian Computation rejection

Given: Data xobs

1. Sample parameter θ from prior distribution p(θ)

2. Simulate process x ∼ p(x|θ)
3. Accept θ if d(x, xobs) < ϵ

ABC rejection

(a) We define a prior distribution P (θ)
and we would like to approximate the posterior
distribution P (θ|D0). We start by sampling a
parameter θ∗ from the prior distribution. We
call this sampled parameter a particle.

(b) We simulate a data set D∗ according
to some simulation framework f(D|θ∗). In
our examples we use different simulation
frameworks. If we simulate a deterministic
dynamical model, we add some noise at the
time points of interest. If we simulate a
stochastic dynamical model, we do not add
any additional noise to the trajectories. We
compare the simulated data set D∗ (circles)
to the experimental data D0 (crosses) using
a distance function, d, and tolerance ϵ; if
d(D0, D∗) ≤ ϵ, we accept θ∗. The tolerance
ϵ ≥ 0 is the desired level of agreement between
D0 and D∗.

(c) The particle θ∗ is accepted because
D∗ and D0 are sufficiently close.

(d) We sample another parameter θ∗ from the
prior distribution and simulate a corresponding
dataset D∗. In this case D∗ and D0 are very
different and we reject the particle (we ”throw
it away”).

(e) We repeat the whole procedure until
N particles have been accepted. They repre-
sent a sample from P (θ|d(D0, D∗) ≤ ϵ), which
approximates the posterior distribution. If
ϵ is sufficiently small then the distribution
P (θ|d(D0, D∗) ≤ ϵ) will be a good approxi-
mation for the “true” posterior distribution,
P (θ|D0).

(f) Many particles were rejected in the
procedure, for which we have spent a lot of
computational effort for simulation. ABC
rejection is therefore computationally ineffi-
cient. We can use ABC SMC to reduce the
computational cost.
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ȳ(
t 2

)
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  Approximate Bayesian Computation rejection

 Figure modified from Toni et al., Bioinformatics (2010) 6

Goal: Approximate posterior distribution of     given data D 
p(θ)
θ
p(θ|D)1. Sample from prior distribution

Approximate Bayesian Computation rejection

Given: Data xobs

1. Sample parameter θ from prior distribution p(θ)

2. Simulate process x ∼ p(x|θ)
3. Accept θ if d(x, xobs) < ϵ

ABC rejection

(a) We define a prior distribution P (θ)
and we would like to approximate the posterior
distribution P (θ|D0). We start by sampling a
parameter θ∗ from the prior distribution. We
call this sampled parameter a particle.

(b) We simulate a data set D∗ according
to some simulation framework f(D|θ∗). In
our examples we use different simulation
frameworks. If we simulate a deterministic
dynamical model, we add some noise at the
time points of interest. If we simulate a
stochastic dynamical model, we do not add
any additional noise to the trajectories. We
compare the simulated data set D∗ (circles)
to the experimental data D0 (crosses) using
a distance function, d, and tolerance ϵ; if
d(D0, D∗) ≤ ϵ, we accept θ∗. The tolerance
ϵ ≥ 0 is the desired level of agreement between
D0 and D∗.

(c) The particle θ∗ is accepted because
D∗ and D0 are sufficiently close.

(d) We sample another parameter θ∗ from the
prior distribution and simulate a corresponding
dataset D∗. In this case D∗ and D0 are very
different and we reject the particle (we ”throw
it away”).

(e) We repeat the whole procedure until
N particles have been accepted. They repre-
sent a sample from P (θ|d(D0, D∗) ≤ ϵ), which
approximates the posterior distribution. If
ϵ is sufficiently small then the distribution
P (θ|d(D0, D∗) ≤ ϵ) will be a good approxi-
mation for the “true” posterior distribution,
P (θ|D0).

(f) Many particles were rejected in the
procedure, for which we have spent a lot of
computational effort for simulation. ABC
rejection is therefore computationally ineffi-
cient. We can use ABC SMC to reduce the
computational cost.
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Figure 1: Schematic representation of ABC re-
jection.

2
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A B C r eject ion

(a) We define a prior dist ribut ion P(θ)
and we would like to approximate the posterior
dist ribut ion P(θ|D0). We start by sampling a
parameter θ∗ from the prior dist ribut ion. We
call this sampled parameter a particle.

(b) We simulate a data set D ∗ according
to some simulat ion framework f (D |θ∗). In
our examples we use different simulat ion
frameworks. If we simulate a determinist ic
dynamical model, we add some noise at the
t ime points of interest . If we simulate a
stochast ic dynamical model, we do not add
any addit ional noise to the t rajectories. We
compare the simulated data set D ∗ (circles)
to the experimental data D0 (crosses) using
a distance funct ion, d, and tolerance ϵ; if
d(D0, D ∗) ≤ ϵ, we accept θ∗. The tolerance
ϵ ≥ 0 is the desired level of agreement between
D0 and D ∗.

(c) The part icle θ∗ is accepted because
D ∗ and D0 are sufficient ly close.

(d) We sample another parameter θ∗ from the
prior dist ribut ion and simulate a corresponding
dataset D ∗. In this case D ∗ and D0 are very
different and we reject the part icle (we ” throw
it away” ).

(e) We repeat the whole procedure unt il
N part icles have been accepted. They repre-
sent a sample from P(θ|d(D0, D ∗) ≤ ϵ), which
approximates the posterior dist ribut ion. If
ϵ is sufficient ly small then the dist ribut ion
P(θ|d(D0, D ∗) ≤ ϵ) will be a good approxi-
mat ion for the “ t rue” posterior dist ribut ion,
P(θ|D0).

(f ) Many part icles were rejected in the
procedure, for which we have spent a lot of
computat ional effort for simulat ion. ABC
reject ion is therefore computat ionally ineffi-
cient . We can use ABC SMC to reduce the
computat ional cost .
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Figure 1: Schemat ic representat ion of ABC re-
ject ion.
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A B C r eject ion

(a) We define a prior dist ribut ion P(θ)
and we would like to approximate the posterior
dist ribut ion P(θ|D0). We start by sampling a
parameter θ∗ from the prior dist ribut ion. We
call this sampled parameter a particle.

(b) We simulate a data set D ∗ according
to some simulat ion framework f (D |θ∗). In
our examples we use different simulat ion
frameworks. If we simulate a determinist ic
dynamical model, we add some noise at the
t ime points of interest . If we simulate a
stochast ic dynamical model, we do not add
any addit ional noise to the t rajectories. We
compare the simulated data set D ∗ (circles)
to the experimental data D0 (crosses) using
a distance funct ion, d, and tolerance ϵ; if
d(D0, D ∗) ≤ ϵ, we accept θ∗. The tolerance
ϵ ≥ 0 is the desired level of agreement between
D0 and D ∗.

(c) The part icle θ∗ is accepted because
D ∗ and D0 are sufficient ly close.

(d) We sample another parameter θ∗ from the
prior dist ribut ion and simulate a corresponding
dataset D ∗. In this case D ∗ and D0 are very
different and we reject the part icle (we ” throw
it away” ).

(e) We repeat the whole procedure unt il
N part icles have been accepted. They repre-
sent a sample from P(θ|d(D0, D ∗) ≤ ϵ), which
approximates the posterior dist ribut ion. If
ϵ is sufficient ly small then the dist ribut ion
P(θ|d(D0, D ∗) ≤ ϵ) will be a good approxi-
mat ion for the “ t rue” posterior dist ribut ion,
P(θ|D0).

(f ) Many part icles were rejected in the
procedure, for which we have spent a lot of
computat ional effort for simulat ion. ABC
reject ion is therefore computat ionally ineffi-
cient . We can use ABC SMC to reduce the
computat ional cost .
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Figure 1: Schemat ic representat ion of ABC re-
ject ion.
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Approximate Bayesian Computation rejection

Given: Data xobs

1. Sample parameter θ from prior distribution p(θ)

2. Simulate process x ∼ p(x|θ)
3. Accept θ if d(x, xobs) < ϵ

ABC rejection

(a) We define a prior distribution P (θ)
and we would like to approximate the posterior
distribution P (θ|D0). We start by sampling a
parameter θ∗ from the prior distribution. We
call this sampled parameter a particle.

(b) We simulate a data set D∗ according
to some simulation framework f(D|θ∗). In
our examples we use different simulation
frameworks. If we simulate a deterministic
dynamical model, we add some noise at the
time points of interest. If we simulate a
stochastic dynamical model, we do not add
any additional noise to the trajectories. We
compare the simulated data set D∗ (circles)
to the experimental data D0 (crosses) using
a distance function, d, and tolerance ϵ; if
d(D0, D∗) ≤ ϵ, we accept θ∗. The tolerance
ϵ ≥ 0 is the desired level of agreement between
D0 and D∗.

(c) The particle θ∗ is accepted because
D∗ and D0 are sufficiently close.

(d) We sample another parameter θ∗ from the
prior distribution and simulate a corresponding
dataset D∗. In this case D∗ and D0 are very
different and we reject the particle (we ”throw
it away”).

(e) We repeat the whole procedure until
N particles have been accepted. They repre-
sent a sample from P (θ|d(D0, D∗) ≤ ϵ), which
approximates the posterior distribution. If
ϵ is sufficiently small then the distribution
P (θ|d(D0, D∗) ≤ ϵ) will be a good approxi-
mation for the “true” posterior distribution,
P (θ|D0).

(f) Many particles were rejected in the
procedure, for which we have spent a lot of
computational effort for simulation. ABC
rejection is therefore computationally ineffi-
cient. We can use ABC SMC to reduce the
computational cost.
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Figure 1: Schematic representation of ABC re-
jection.
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(a) We define a prior dist ribut ion P(θ)
and we would like to approximate the posterior
dist ribut ion P(θ|D0). We start by sampling a
parameter θ∗ from the prior dist ribut ion. We
call this sampled parameter a particle.

(b) We simulate a data set D ∗ according
to some simulat ion framework f (D |θ∗). In
our examples we use different simulat ion
frameworks. If we simulate a determinist ic
dynamical model, we add some noise at the
t ime points of interest . If we simulate a
stochast ic dynamical model, we do not add
any addit ional noise to the t rajectories. We
compare the simulated data set D ∗ (circles)
to the experimental data D0 (crosses) using
a distance funct ion, d, and tolerance ϵ; if
d(D0, D ∗) ≤ ϵ, we accept θ∗. The tolerance
ϵ ≥ 0 is the desired level of agreement between
D0 and D ∗.

(c) The part icle θ∗ is accepted because
D ∗ and D0 are sufficient ly close.

(d) We sample another parameter θ∗ from the
prior dist ribut ion and simulate a corresponding
dataset D ∗. In this case D ∗ and D0 are very
different and we reject the part icle (we ” throw
it away” ).

(e) We repeat the whole procedure unt il
N part icles have been accepted. They repre-
sent a sample from P(θ|d(D0, D ∗) ≤ ϵ), which
approximates the posterior dist ribut ion. If
ϵ is sufficient ly small then the dist ribut ion
P(θ|d(D0, D ∗) ≤ ϵ) will be a good approxi-
mat ion for the “ t rue” posterior dist ribut ion,
P(θ|D0).

(f ) Many part icles were rejected in the
procedure, for which we have spent a lot of
computat ional effort for simulat ion. ABC
reject ion is therefore computat ionally ineffi-
cient . We can use ABC SMC to reduce the
computat ional cost .
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Figure 1: Schemat ic representat ion of ABC re-
ject ion.
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(a) We define a prior dist ribut ion P(θ)
and we would like to approximate the posterior
dist ribut ion P(θ|D0). We start by sampling a
parameter θ∗ from the prior dist ribut ion. We
call this sampled parameter a particle.

(b) We simulate a data set D ∗ according
to some simulat ion framework f (D |θ∗). In
our examples we use different simulat ion
frameworks. If we simulate a determinist ic
dynamical model, we add some noise at the
t ime points of interest . If we simulate a
stochast ic dynamical model, we do not add
any addit ional noise to the t rajectories. We
compare the simulated data set D ∗ (circles)
to the experimental data D0 (crosses) using
a distance funct ion, d, and tolerance ϵ; if
d(D0, D ∗) ≤ ϵ, we accept θ∗. The tolerance
ϵ ≥ 0 is the desired level of agreement between
D0 and D ∗.

(c) The part icle θ∗ is accepted because
D ∗ and D0 are sufficient ly close.

(d) We sample another parameter θ∗ from the
prior dist ribut ion and simulate a corresponding
dataset D ∗. In this case D ∗ and D0 are very
different and we reject the part icle (we ” throw
it away” ).

(e) We repeat the whole procedure unt il
N part icles have been accepted. They repre-
sent a sample from P(θ|d(D0, D ∗) ≤ ϵ), which
approximates the posterior dist ribut ion. If
ϵ is sufficient ly small then the dist ribut ion
P(θ|d(D0, D ∗) ≤ ϵ) will be a good approxi-
mat ion for the “ t rue” posterior dist ribut ion,
P(θ|D0).

(f ) Many part icles were rejected in the
procedure, for which we have spent a lot of
computat ional effort for simulat ion. ABC
reject ion is therefore computat ionally ineffi-
cient . We can use ABC SMC to reduce the
computat ional cost .
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Figure 1: Schemat ic representat ion of ABC re-
ject ion.
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  Approximate Bayesian Computation rejection

 Figure modified from Toni et al., Bioinformatics (2010) 6

Goal: Approximate posterior distribution of     given data D 
p(θ)
θ
p(θ|D)1. Sample from prior distribution

2. Simulate data set

Approximate Bayesian Computation rejection

Given: Data xobs

1. Sample parameter θ from prior distribution p(θ)

2. Simulate process x ∼ p(x|θ)
3. Accept θ if d(x, xobs) < ϵ

ABC rejection

(a) We define a prior distribution P (θ)
and we would like to approximate the posterior
distribution P (θ|D0). We start by sampling a
parameter θ∗ from the prior distribution. We
call this sampled parameter a particle.

(b) We simulate a data set D∗ according
to some simulation framework f(D|θ∗). In
our examples we use different simulation
frameworks. If we simulate a deterministic
dynamical model, we add some noise at the
time points of interest. If we simulate a
stochastic dynamical model, we do not add
any additional noise to the trajectories. We
compare the simulated data set D∗ (circles)
to the experimental data D0 (crosses) using
a distance function, d, and tolerance ϵ; if
d(D0, D∗) ≤ ϵ, we accept θ∗. The tolerance
ϵ ≥ 0 is the desired level of agreement between
D0 and D∗.

(c) The particle θ∗ is accepted because
D∗ and D0 are sufficiently close.

(d) We sample another parameter θ∗ from the
prior distribution and simulate a corresponding
dataset D∗. In this case D∗ and D0 are very
different and we reject the particle (we ”throw
it away”).

(e) We repeat the whole procedure until
N particles have been accepted. They repre-
sent a sample from P (θ|d(D0, D∗) ≤ ϵ), which
approximates the posterior distribution. If
ϵ is sufficiently small then the distribution
P (θ|d(D0, D∗) ≤ ϵ) will be a good approxi-
mation for the “true” posterior distribution,
P (θ|D0).

(f) Many particles were rejected in the
procedure, for which we have spent a lot of
computational effort for simulation. ABC
rejection is therefore computationally ineffi-
cient. We can use ABC SMC to reduce the
computational cost.
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Figure 1: Schematic representation of ABC re-
jection.

2

→

A B C r eject ion

(a) We define a prior dist ribut ion P(θ)
and we would like to approximate the posterior
dist ribut ion P(θ|D0). We start by sampling a
parameter θ∗ from the prior dist ribut ion. We
call this sampled parameter a particle.

(b) We simulate a data set D ∗ according
to some simulat ion framework f (D |θ∗). In
our examples we use different simulat ion
frameworks. If we simulate a determinist ic
dynamical model, we add some noise at the
t ime points of interest . If we simulate a
stochast ic dynamical model, we do not add
any addit ional noise to the t rajectories. We
compare the simulated data set D ∗ (circles)
to the experimental data D0 (crosses) using
a distance funct ion, d, and tolerance ϵ; if
d(D0, D ∗) ≤ ϵ, we accept θ∗. The tolerance
ϵ ≥ 0 is the desired level of agreement between
D0 and D ∗.

(c) The part icle θ∗ is accepted because
D ∗ and D0 are sufficient ly close.

(d) We sample another parameter θ∗ from the
prior dist ribut ion and simulate a corresponding
dataset D ∗. In this case D ∗ and D0 are very
different and we reject the part icle (we ” throw
it away” ).

(e) We repeat the whole procedure unt il
N part icles have been accepted. They repre-
sent a sample from P(θ|d(D0, D ∗) ≤ ϵ), which
approximates the posterior dist ribut ion. If
ϵ is sufficient ly small then the dist ribut ion
P(θ|d(D0, D ∗) ≤ ϵ) will be a good approxi-
mat ion for the “ t rue” posterior dist ribut ion,
P(θ|D0).

(f ) Many part icles were rejected in the
procedure, for which we have spent a lot of
computat ional effort for simulat ion. ABC
reject ion is therefore computat ionally ineffi-
cient . We can use ABC SMC to reduce the
computat ional cost .
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Figure 1: Schemat ic representat ion of ABC re-
ject ion.

2

→

A B C r eject ion

(a) We define a prior dist ribut ion P(θ)
and we would like to approximate the posterior
dist ribut ion P(θ|D0). We start by sampling a
parameter θ∗ from the prior dist ribut ion. We
call this sampled parameter a particle.

(b) We simulate a data set D ∗ according
to some simulat ion framework f (D |θ∗). In
our examples we use different simulat ion
frameworks. If we simulate a determinist ic
dynamical model, we add some noise at the
t ime points of interest . If we simulate a
stochast ic dynamical model, we do not add
any addit ional noise to the t rajectories. We
compare the simulated data set D ∗ (circles)
to the experimental data D0 (crosses) using
a distance funct ion, d, and tolerance ϵ; if
d(D0, D ∗) ≤ ϵ, we accept θ∗. The tolerance
ϵ ≥ 0 is the desired level of agreement between
D0 and D ∗.

(c) The part icle θ∗ is accepted because
D ∗ and D0 are sufficient ly close.

(d) We sample another parameter θ∗ from the
prior dist ribut ion and simulate a corresponding
dataset D ∗. In this case D ∗ and D0 are very
different and we reject the part icle (we ” throw
it away” ).

(e) We repeat the whole procedure unt il
N part icles have been accepted. They repre-
sent a sample from P(θ|d(D0, D ∗) ≤ ϵ), which
approximates the posterior dist ribut ion. If
ϵ is sufficient ly small then the dist ribut ion
P(θ|d(D0, D ∗) ≤ ϵ) will be a good approxi-
mat ion for the “ t rue” posterior dist ribut ion,
P(θ|D0).

(f ) Many part icles were rejected in the
procedure, for which we have spent a lot of
computat ional effort for simulat ion. ABC
reject ion is therefore computat ionally ineffi-
cient . We can use ABC SMC to reduce the
computat ional cost .
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Figure 1: Schemat ic representat ion of ABC re-
ject ion.
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Approximate Bayesian Computation rejection

Given: Data xobs

1. Sample parameter θ from prior distribution p(θ)

2. Simulate process x ∼ p(x|θ)
3. Accept θ if d(x, xobs) < ϵ

ABC rejection

(a) We define a prior distribution P (θ)
and we would like to approximate the posterior
distribution P (θ|D0). We start by sampling a
parameter θ∗ from the prior distribution. We
call this sampled parameter a particle.

(b) We simulate a data set D∗ according
to some simulation framework f(D|θ∗). In
our examples we use different simulation
frameworks. If we simulate a deterministic
dynamical model, we add some noise at the
time points of interest. If we simulate a
stochastic dynamical model, we do not add
any additional noise to the trajectories. We
compare the simulated data set D∗ (circles)
to the experimental data D0 (crosses) using
a distance function, d, and tolerance ϵ; if
d(D0, D∗) ≤ ϵ, we accept θ∗. The tolerance
ϵ ≥ 0 is the desired level of agreement between
D0 and D∗.

(c) The particle θ∗ is accepted because
D∗ and D0 are sufficiently close.

(d) We sample another parameter θ∗ from the
prior distribution and simulate a corresponding
dataset D∗. In this case D∗ and D0 are very
different and we reject the particle (we ”throw
it away”).

(e) We repeat the whole procedure until
N particles have been accepted. They repre-
sent a sample from P (θ|d(D0, D∗) ≤ ϵ), which
approximates the posterior distribution. If
ϵ is sufficiently small then the distribution
P (θ|d(D0, D∗) ≤ ϵ) will be a good approxi-
mation for the “true” posterior distribution,
P (θ|D0).

(f) Many particles were rejected in the
procedure, for which we have spent a lot of
computational effort for simulation. ABC
rejection is therefore computationally ineffi-
cient. We can use ABC SMC to reduce the
computational cost.
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(f)

Figure 1: Schematic representation of ABC re-
jection.

2

→

A B C r eject ion

(a) We define a prior dist ribut ion P(θ)
and we would like to approximate the posterior
dist ribut ion P(θ|D0). We start by sampling a
parameter θ∗ from the prior dist ribut ion. We
call this sampled parameter a particle.

(b) We simulate a data set D ∗ according
to some simulat ion framework f (D |θ∗). In
our examples we use different simulat ion
frameworks. If we simulate a determinist ic
dynamical model, we add some noise at the
t ime points of interest . If we simulate a
stochast ic dynamical model, we do not add
any addit ional noise to the t rajectories. We
compare the simulated data set D ∗ (circles)
to the experimental data D0 (crosses) using
a distance funct ion, d, and tolerance ϵ; if
d(D0, D ∗) ≤ ϵ, we accept θ∗. The tolerance
ϵ ≥ 0 is the desired level of agreement between
D0 and D ∗.

(c) The part icle θ∗ is accepted because
D ∗ and D0 are sufficient ly close.

(d) We sample another parameter θ∗ from the
prior dist ribut ion and simulate a corresponding
dataset D ∗. In this case D ∗ and D0 are very
different and we reject the part icle (we ” throw
it away” ).

(e) We repeat the whole procedure unt il
N part icles have been accepted. They repre-
sent a sample from P(θ|d(D0, D ∗) ≤ ϵ), which
approximates the posterior dist ribut ion. If
ϵ is sufficient ly small then the dist ribut ion
P(θ|d(D0, D ∗) ≤ ϵ) will be a good approxi-
mat ion for the “ t rue” posterior dist ribut ion,
P(θ|D0).

(f ) Many part icles were rejected in the
procedure, for which we have spent a lot of
computat ional effort for simulat ion. ABC
reject ion is therefore computat ionally ineffi-
cient . We can use ABC SMC to reduce the
computat ional cost .
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(f )

Figure 1: Schemat ic representat ion of ABC re-
ject ion.
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A B C r eject ion

(a) We define a prior dist ribut ion P(θ)
and we would like to approximate the posterior
dist ribut ion P(θ|D0). We start by sampling a
parameter θ∗ from the prior dist ribut ion. We
call this sampled parameter a particle.

(b) We simulate a data set D ∗ according
to some simulat ion framework f (D |θ∗). In
our examples we use different simulat ion
frameworks. If we simulate a determinist ic
dynamical model, we add some noise at the
t ime points of interest . If we simulate a
stochast ic dynamical model, we do not add
any addit ional noise to the t rajectories. We
compare the simulated data set D ∗ (circles)
to the experimental data D0 (crosses) using
a distance funct ion, d, and tolerance ϵ; if
d(D0, D ∗) ≤ ϵ, we accept θ∗. The tolerance
ϵ ≥ 0 is the desired level of agreement between
D0 and D ∗.

(c) The part icle θ∗ is accepted because
D ∗ and D0 are sufficient ly close.

(d) We sample another parameter θ∗ from the
prior dist ribut ion and simulate a corresponding
dataset D ∗. In this case D ∗ and D0 are very
different and we reject the part icle (we ” throw
it away” ).

(e) We repeat the whole procedure unt il
N part icles have been accepted. They repre-
sent a sample from P(θ|d(D0, D ∗) ≤ ϵ), which
approximates the posterior dist ribut ion. If
ϵ is sufficient ly small then the dist ribut ion
P(θ|d(D0, D ∗) ≤ ϵ) will be a good approxi-
mat ion for the “ t rue” posterior dist ribut ion,
P(θ|D0).

(f ) Many part icles were rejected in the
procedure, for which we have spent a lot of
computat ional effort for simulat ion. ABC
reject ion is therefore computat ionally ineffi-
cient . We can use ABC SMC to reduce the
computat ional cost .
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Figure 1: Schemat ic representat ion of ABC re-
ject ion.
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Approximate Bayesian Computation rejection

Given: Data xobs

1. Sample parameter θ from prior distribution p(θ)

2. Simulate process x ∼ p(x|θ)
3. Accept θ if d(x, xobs) < ϵ

ABC rejection

(a) We define a prior distribution P (θ)
and we would like to approximate the posterior
distribution P (θ|D0). We start by sampling a
parameter θ∗ from the prior distribution. We
call this sampled parameter a particle.

(b) We simulate a data set D∗ according
to some simulation framework f(D|θ∗). In
our examples we use different simulation
frameworks. If we simulate a deterministic
dynamical model, we add some noise at the
time points of interest. If we simulate a
stochastic dynamical model, we do not add
any additional noise to the trajectories. We
compare the simulated data set D∗ (circles)
to the experimental data D0 (crosses) using
a distance function, d, and tolerance ϵ; if
d(D0, D∗) ≤ ϵ, we accept θ∗. The tolerance
ϵ ≥ 0 is the desired level of agreement between
D0 and D∗.

(c) The particle θ∗ is accepted because
D∗ and D0 are sufficiently close.

(d) We sample another parameter θ∗ from the
prior distribution and simulate a corresponding
dataset D∗. In this case D∗ and D0 are very
different and we reject the particle (we ”throw
it away”).

(e) We repeat the whole procedure until
N particles have been accepted. They repre-
sent a sample from P (θ|d(D0, D∗) ≤ ϵ), which
approximates the posterior distribution. If
ϵ is sufficiently small then the distribution
P (θ|d(D0, D∗) ≤ ϵ) will be a good approxi-
mation for the “true” posterior distribution,
P (θ|D0).

(f) Many particles were rejected in the
procedure, for which we have spent a lot of
computational effort for simulation. ABC
rejection is therefore computationally ineffi-
cient. We can use ABC SMC to reduce the
computational cost.
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Figure 1: Schematic representation of ABC re-
jection.
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(a) We define a prior dist ribut ion P(θ)
and we would like to approximate the posterior
dist ribut ion P(θ|D0). We start by sampling a
parameter θ∗ from the prior dist ribut ion. We
call this sampled parameter a particle.

(b) We simulate a data set D ∗ according
to some simulat ion framework f (D |θ∗). In
our examples we use different simulat ion
frameworks. If we simulate a determinist ic
dynamical model, we add some noise at the
t ime points of interest . If we simulate a
stochast ic dynamical model, we do not add
any addit ional noise to the t rajectories. We
compare the simulated data set D ∗ (circles)
to the experimental data D0 (crosses) using
a distance funct ion, d, and tolerance ϵ; if
d(D0, D ∗) ≤ ϵ, we accept θ∗. The tolerance
ϵ ≥ 0 is the desired level of agreement between
D0 and D ∗.

(c) The part icle θ∗ is accepted because
D ∗ and D0 are sufficient ly close.

(d) We sample another parameter θ∗ from the
prior dist ribut ion and simulate a corresponding
dataset D ∗. In this case D ∗ and D0 are very
different and we reject the part icle (we ” throw
it away” ).

(e) We repeat the whole procedure unt il
N part icles have been accepted. They repre-
sent a sample from P(θ|d(D0, D ∗) ≤ ϵ), which
approximates the posterior dist ribut ion. If
ϵ is sufficient ly small then the dist ribut ion
P(θ|d(D0, D ∗) ≤ ϵ) will be a good approxi-
mat ion for the “ t rue” posterior dist ribut ion,
P(θ|D0).

(f ) Many part icles were rejected in the
procedure, for which we have spent a lot of
computat ional effort for simulat ion. ABC
reject ion is therefore computat ionally ineffi-
cient . We can use ABC SMC to reduce the
computat ional cost .
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Figure 1: Schemat ic representat ion of ABC re-
ject ion.

2

→

A B C r eject ion

(a) We define a prior dist ribut ion P(θ)
and we would like to approximate the posterior
dist ribut ion P(θ|D0). We start by sampling a
parameter θ∗ from the prior dist ribut ion. We
call this sampled parameter a particle.

(b) We simulate a data set D ∗ according
to some simulat ion framework f (D |θ∗). In
our examples we use different simulat ion
frameworks. If we simulate a determinist ic
dynamical model, we add some noise at the
t ime points of interest . If we simulate a
stochast ic dynamical model, we do not add
any addit ional noise to the t rajectories. We
compare the simulated data set D ∗ (circles)
to the experimental data D0 (crosses) using
a distance funct ion, d, and tolerance ϵ; if
d(D0, D ∗) ≤ ϵ, we accept θ∗. The tolerance
ϵ ≥ 0 is the desired level of agreement between
D0 and D ∗.

(c) The part icle θ∗ is accepted because
D ∗ and D0 are sufficient ly close.

(d) We sample another parameter θ∗ from the
prior dist ribut ion and simulate a corresponding
dataset D ∗. In this case D ∗ and D0 are very
different and we reject the part icle (we ” throw
it away” ).

(e) We repeat the whole procedure unt il
N part icles have been accepted. They repre-
sent a sample from P(θ|d(D0, D ∗) ≤ ϵ), which
approximates the posterior dist ribut ion. If
ϵ is sufficient ly small then the dist ribut ion
P(θ|d(D0, D ∗) ≤ ϵ) will be a good approxi-
mat ion for the “ t rue” posterior dist ribut ion,
P(θ|D0).

(f ) Many part icles were rejected in the
procedure, for which we have spent a lot of
computat ional effort for simulat ion. ABC
reject ion is therefore computat ionally ineffi-
cient . We can use ABC SMC to reduce the
computat ional cost .
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Figure 1: Schemat ic representat ion of ABC re-
ject ion.
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ȳ 1 ȳ 2 ȳ



  Approximate Bayesian Computation rejection

 Figure modified from Toni et al., Bioinformatics (2010) 6

Goal: Approximate posterior distribution of     given data D 
p(θ)
θ
p(θ|D)1. Sample from prior distribution

2. Simulate data set

3. Accept or reject sampled parameter with respect to distance 
between simulated and observed data

Approximate Bayesian Computation rejection

Given: Data xobs

1. Sample parameter θ from prior distribution p(θ)

2. Simulate process x ∼ p(x|θ)
3. Accept θ if d(x, xobs) < ϵ

ABC rejection

(a) We define a prior distribution P (θ)
and we would like to approximate the posterior
distribution P (θ|D0). We start by sampling a
parameter θ∗ from the prior distribution. We
call this sampled parameter a particle.

(b) We simulate a data set D∗ according
to some simulation framework f(D|θ∗). In
our examples we use different simulation
frameworks. If we simulate a deterministic
dynamical model, we add some noise at the
time points of interest. If we simulate a
stochastic dynamical model, we do not add
any additional noise to the trajectories. We
compare the simulated data set D∗ (circles)
to the experimental data D0 (crosses) using
a distance function, d, and tolerance ϵ; if
d(D0, D∗) ≤ ϵ, we accept θ∗. The tolerance
ϵ ≥ 0 is the desired level of agreement between
D0 and D∗.

(c) The particle θ∗ is accepted because
D∗ and D0 are sufficiently close.

(d) We sample another parameter θ∗ from the
prior distribution and simulate a corresponding
dataset D∗. In this case D∗ and D0 are very
different and we reject the particle (we ”throw
it away”).

(e) We repeat the whole procedure until
N particles have been accepted. They repre-
sent a sample from P (θ|d(D0, D∗) ≤ ϵ), which
approximates the posterior distribution. If
ϵ is sufficiently small then the distribution
P (θ|d(D0, D∗) ≤ ϵ) will be a good approxi-
mation for the “true” posterior distribution,
P (θ|D0).

(f) Many particles were rejected in the
procedure, for which we have spent a lot of
computational effort for simulation. ABC
rejection is therefore computationally ineffi-
cient. We can use ABC SMC to reduce the
computational cost.
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Figure 1: Schematic representation of ABC re-
jection.

2

→

A B C r eject ion

(a) We define a prior dist ribut ion P(θ)
and we would like to approximate the posterior
dist ribut ion P(θ|D0). We start by sampling a
parameter θ∗ from the prior dist ribut ion. We
call this sampled parameter a particle.

(b) We simulate a data set D ∗ according
to some simulat ion framework f (D |θ∗). In
our examples we use different simulat ion
frameworks. If we simulate a determinist ic
dynamical model, we add some noise at the
t ime points of interest . If we simulate a
stochast ic dynamical model, we do not add
any addit ional noise to the t rajectories. We
compare the simulated data set D ∗ (circles)
to the experimental data D0 (crosses) using
a distance funct ion, d, and tolerance ϵ; if
d(D0, D ∗) ≤ ϵ, we accept θ∗. The tolerance
ϵ ≥ 0 is the desired level of agreement between
D0 and D ∗.

(c) The part icle θ∗ is accepted because
D ∗ and D0 are sufficient ly close.

(d) We sample another parameter θ∗ from the
prior dist ribut ion and simulate a corresponding
dataset D ∗. In this case D ∗ and D0 are very
different and we reject the part icle (we ” throw
it away” ).

(e) We repeat the whole procedure unt il
N part icles have been accepted. They repre-
sent a sample from P(θ|d(D0, D ∗) ≤ ϵ), which
approximates the posterior dist ribut ion. If
ϵ is sufficient ly small then the dist ribut ion
P(θ|d(D0, D ∗) ≤ ϵ) will be a good approxi-
mat ion for the “ t rue” posterior dist ribut ion,
P(θ|D0).

(f ) Many part icles were rejected in the
procedure, for which we have spent a lot of
computat ional effort for simulat ion. ABC
reject ion is therefore computat ionally ineffi-
cient . We can use ABC SMC to reduce the
computat ional cost .
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Figure 1: Schemat ic representat ion of ABC re-
ject ion.

2
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A B C r eject ion

(a) We define a prior dist ribut ion P(θ)
and we would like to approximate the posterior
dist ribut ion P(θ|D0). We start by sampling a
parameter θ∗ from the prior dist ribut ion. We
call this sampled parameter a particle.

(b) We simulate a data set D ∗ according
to some simulat ion framework f (D |θ∗). In
our examples we use different simulat ion
frameworks. If we simulate a determinist ic
dynamical model, we add some noise at the
t ime points of interest . If we simulate a
stochast ic dynamical model, we do not add
any addit ional noise to the t rajectories. We
compare the simulated data set D ∗ (circles)
to the experimental data D0 (crosses) using
a distance funct ion, d, and tolerance ϵ; if
d(D0, D ∗) ≤ ϵ, we accept θ∗. The tolerance
ϵ ≥ 0 is the desired level of agreement between
D0 and D ∗.

(c) The part icle θ∗ is accepted because
D ∗ and D0 are sufficient ly close.

(d) We sample another parameter θ∗ from the
prior dist ribut ion and simulate a corresponding
dataset D ∗. In this case D ∗ and D0 are very
different and we reject the part icle (we ” throw
it away” ).

(e) We repeat the whole procedure unt il
N part icles have been accepted. They repre-
sent a sample from P(θ|d(D0, D ∗) ≤ ϵ), which
approximates the posterior dist ribut ion. If
ϵ is sufficient ly small then the dist ribut ion
P(θ|d(D0, D ∗) ≤ ϵ) will be a good approxi-
mat ion for the “ t rue” posterior dist ribut ion,
P(θ|D0).

(f ) Many part icles were rejected in the
procedure, for which we have spent a lot of
computat ional effort for simulat ion. ABC
reject ion is therefore computat ionally ineffi-
cient . We can use ABC SMC to reduce the
computat ional cost .
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Figure 1: Schemat ic representat ion of ABC re-
ject ion.
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Approximate Bayesian Computation rejection

Given: Data xobs

1. Sample parameter θ from prior distribution p(θ)

2. Simulate process x ∼ p(x|θ)
3. Accept θ if d(x, xobs) < ϵ

ABC rejection

(a) We define a prior distribution P (θ)
and we would like to approximate the posterior
distribution P (θ|D0). We start by sampling a
parameter θ∗ from the prior distribution. We
call this sampled parameter a particle.

(b) We simulate a data set D∗ according
to some simulation framework f(D|θ∗). In
our examples we use different simulation
frameworks. If we simulate a deterministic
dynamical model, we add some noise at the
time points of interest. If we simulate a
stochastic dynamical model, we do not add
any additional noise to the trajectories. We
compare the simulated data set D∗ (circles)
to the experimental data D0 (crosses) using
a distance function, d, and tolerance ϵ; if
d(D0, D∗) ≤ ϵ, we accept θ∗. The tolerance
ϵ ≥ 0 is the desired level of agreement between
D0 and D∗.

(c) The particle θ∗ is accepted because
D∗ and D0 are sufficiently close.

(d) We sample another parameter θ∗ from the
prior distribution and simulate a corresponding
dataset D∗. In this case D∗ and D0 are very
different and we reject the particle (we ”throw
it away”).

(e) We repeat the whole procedure until
N particles have been accepted. They repre-
sent a sample from P (θ|d(D0, D∗) ≤ ϵ), which
approximates the posterior distribution. If
ϵ is sufficiently small then the distribution
P (θ|d(D0, D∗) ≤ ϵ) will be a good approxi-
mation for the “true” posterior distribution,
P (θ|D0).

(f) Many particles were rejected in the
procedure, for which we have spent a lot of
computational effort for simulation. ABC
rejection is therefore computationally ineffi-
cient. We can use ABC SMC to reduce the
computational cost.
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Figure 1: Schematic representation of ABC re-
jection.
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(a) We define a prior dist ribut ion P(θ)
and we would like to approximate the posterior
dist ribut ion P(θ|D0). We start by sampling a
parameter θ∗ from the prior dist ribut ion. We
call this sampled parameter a particle.

(b) We simulate a data set D ∗ according
to some simulat ion framework f (D |θ∗). In
our examples we use different simulat ion
frameworks. If we simulate a determinist ic
dynamical model, we add some noise at the
t ime points of interest . If we simulate a
stochast ic dynamical model, we do not add
any addit ional noise to the t rajectories. We
compare the simulated data set D ∗ (circles)
to the experimental data D0 (crosses) using
a distance funct ion, d, and tolerance ϵ; if
d(D0, D ∗) ≤ ϵ, we accept θ∗. The tolerance
ϵ ≥ 0 is the desired level of agreement between
D0 and D ∗.

(c) The part icle θ∗ is accepted because
D ∗ and D0 are sufficient ly close.

(d) We sample another parameter θ∗ from the
prior dist ribut ion and simulate a corresponding
dataset D ∗. In this case D ∗ and D0 are very
different and we reject the part icle (we ” throw
it away” ).

(e) We repeat the whole procedure unt il
N part icles have been accepted. They repre-
sent a sample from P(θ|d(D0, D ∗) ≤ ϵ), which
approximates the posterior dist ribut ion. If
ϵ is sufficient ly small then the dist ribut ion
P(θ|d(D0, D ∗) ≤ ϵ) will be a good approxi-
mat ion for the “ t rue” posterior dist ribut ion,
P(θ|D0).

(f ) Many part icles were rejected in the
procedure, for which we have spent a lot of
computat ional effort for simulat ion. ABC
reject ion is therefore computat ionally ineffi-
cient . We can use ABC SMC to reduce the
computat ional cost .
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Figure 1: Schemat ic representat ion of ABC re-
ject ion.
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(a) We define a prior dist ribut ion P(θ)
and we would like to approximate the posterior
dist ribut ion P(θ|D0). We start by sampling a
parameter θ∗ from the prior dist ribut ion. We
call this sampled parameter a particle.

(b) We simulate a data set D ∗ according
to some simulat ion framework f (D |θ∗). In
our examples we use different simulat ion
frameworks. If we simulate a determinist ic
dynamical model, we add some noise at the
t ime points of interest . If we simulate a
stochast ic dynamical model, we do not add
any addit ional noise to the t rajectories. We
compare the simulated data set D ∗ (circles)
to the experimental data D0 (crosses) using
a distance funct ion, d, and tolerance ϵ; if
d(D0, D ∗) ≤ ϵ, we accept θ∗. The tolerance
ϵ ≥ 0 is the desired level of agreement between
D0 and D ∗.

(c) The part icle θ∗ is accepted because
D ∗ and D0 are sufficient ly close.

(d) We sample another parameter θ∗ from the
prior dist ribut ion and simulate a corresponding
dataset D ∗. In this case D ∗ and D0 are very
different and we reject the part icle (we ” throw
it away” ).

(e) We repeat the whole procedure unt il
N part icles have been accepted. They repre-
sent a sample from P(θ|d(D0, D ∗) ≤ ϵ), which
approximates the posterior dist ribut ion. If
ϵ is sufficient ly small then the dist ribut ion
P(θ|d(D0, D ∗) ≤ ϵ) will be a good approxi-
mat ion for the “ t rue” posterior dist ribut ion,
P(θ|D0).

(f ) Many part icles were rejected in the
procedure, for which we have spent a lot of
computat ional effort for simulat ion. ABC
reject ion is therefore computat ionally ineffi-
cient . We can use ABC SMC to reduce the
computat ional cost .
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Figure 1: Schemat ic representat ion of ABC re-
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Approximate Bayesian Computation rejection

Given: Data xobs

1. Sample parameter θ from prior distribution p(θ)

2. Simulate process x ∼ p(x|θ)
3. Accept θ if d(x, xobs) < ϵ

ABC rejection

(a) We define a prior distribution P (θ)
and we would like to approximate the posterior
distribution P (θ|D0). We start by sampling a
parameter θ∗ from the prior distribution. We
call this sampled parameter a particle.

(b) We simulate a data set D∗ according
to some simulation framework f(D|θ∗). In
our examples we use different simulation
frameworks. If we simulate a deterministic
dynamical model, we add some noise at the
time points of interest. If we simulate a
stochastic dynamical model, we do not add
any additional noise to the trajectories. We
compare the simulated data set D∗ (circles)
to the experimental data D0 (crosses) using
a distance function, d, and tolerance ϵ; if
d(D0, D∗) ≤ ϵ, we accept θ∗. The tolerance
ϵ ≥ 0 is the desired level of agreement between
D0 and D∗.

(c) The particle θ∗ is accepted because
D∗ and D0 are sufficiently close.

(d) We sample another parameter θ∗ from the
prior distribution and simulate a corresponding
dataset D∗. In this case D∗ and D0 are very
different and we reject the particle (we ”throw
it away”).

(e) We repeat the whole procedure until
N particles have been accepted. They repre-
sent a sample from P (θ|d(D0, D∗) ≤ ϵ), which
approximates the posterior distribution. If
ϵ is sufficiently small then the distribution
P (θ|d(D0, D∗) ≤ ϵ) will be a good approxi-
mation for the “true” posterior distribution,
P (θ|D0).

(f) Many particles were rejected in the
procedure, for which we have spent a lot of
computational effort for simulation. ABC
rejection is therefore computationally ineffi-
cient. We can use ABC SMC to reduce the
computational cost.
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Figure 1: Schematic representation of ABC re-
jection.
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(a) We define a prior dist ribut ion P(θ)
and we would like to approximate the posterior
dist ribut ion P(θ|D0). We start by sampling a
parameter θ∗ from the prior dist ribut ion. We
call this sampled parameter a particle.

(b) We simulate a data set D ∗ according
to some simulat ion framework f (D |θ∗). In
our examples we use different simulat ion
frameworks. If we simulate a determinist ic
dynamical model, we add some noise at the
t ime points of interest . If we simulate a
stochast ic dynamical model, we do not add
any addit ional noise to the t rajectories. We
compare the simulated data set D ∗ (circles)
to the experimental data D0 (crosses) using
a distance funct ion, d, and tolerance ϵ; if
d(D0, D ∗) ≤ ϵ, we accept θ∗. The tolerance
ϵ ≥ 0 is the desired level of agreement between
D0 and D ∗.

(c) The part icle θ∗ is accepted because
D ∗ and D0 are sufficient ly close.

(d) We sample another parameter θ∗ from the
prior dist ribut ion and simulate a corresponding
dataset D ∗. In this case D ∗ and D0 are very
different and we reject the part icle (we ” throw
it away” ).

(e) We repeat the whole procedure unt il
N part icles have been accepted. They repre-
sent a sample from P(θ|d(D0, D ∗) ≤ ϵ), which
approximates the posterior dist ribut ion. If
ϵ is sufficient ly small then the dist ribut ion
P(θ|d(D0, D ∗) ≤ ϵ) will be a good approxi-
mat ion for the “ t rue” posterior dist ribut ion,
P(θ|D0).

(f ) Many part icles were rejected in the
procedure, for which we have spent a lot of
computat ional effort for simulat ion. ABC
reject ion is therefore computat ionally ineffi-
cient . We can use ABC SMC to reduce the
computat ional cost .
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Figure 1: Schemat ic representat ion of ABC re-
ject ion.
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(a) We define a prior dist ribut ion P(θ)
and we would like to approximate the posterior
dist ribut ion P(θ|D0). We start by sampling a
parameter θ∗ from the prior dist ribut ion. We
call this sampled parameter a particle.

(b) We simulate a data set D ∗ according
to some simulat ion framework f (D |θ∗). In
our examples we use different simulat ion
frameworks. If we simulate a determinist ic
dynamical model, we add some noise at the
t ime points of interest . If we simulate a
stochast ic dynamical model, we do not add
any addit ional noise to the t rajectories. We
compare the simulated data set D ∗ (circles)
to the experimental data D0 (crosses) using
a distance funct ion, d, and tolerance ϵ; if
d(D0, D ∗) ≤ ϵ, we accept θ∗. The tolerance
ϵ ≥ 0 is the desired level of agreement between
D0 and D ∗.

(c) The part icle θ∗ is accepted because
D ∗ and D0 are sufficient ly close.

(d) We sample another parameter θ∗ from the
prior dist ribut ion and simulate a corresponding
dataset D ∗. In this case D ∗ and D0 are very
different and we reject the part icle (we ” throw
it away” ).

(e) We repeat the whole procedure unt il
N part icles have been accepted. They repre-
sent a sample from P(θ|d(D0, D ∗) ≤ ϵ), which
approximates the posterior dist ribut ion. If
ϵ is sufficient ly small then the dist ribut ion
P(θ|d(D0, D ∗) ≤ ϵ) will be a good approxi-
mat ion for the “ t rue” posterior dist ribut ion,
P(θ|D0).

(f ) Many part icles were rejected in the
procedure, for which we have spent a lot of
computat ional effort for simulat ion. ABC
reject ion is therefore computat ionally ineffi-
cient . We can use ABC SMC to reduce the
computat ional cost .
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Figure 1: Schemat ic representat ion of ABC re-
ject ion.
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Approximate Bayesian Computation rejection

Given: Data xobs

1. Sample parameter θ from prior distribution p(θ)

2. Simulate process x ∼ p(x|θ)
3. Accept θ if d(x, xobs) < ϵ

ABC rejection

(a) We define a prior distribution P (θ)
and we would like to approximate the posterior
distribution P (θ|D0). We start by sampling a
parameter θ∗ from the prior distribution. We
call this sampled parameter a particle.

(b) We simulate a data set D∗ according
to some simulation framework f(D|θ∗). In
our examples we use different simulation
frameworks. If we simulate a deterministic
dynamical model, we add some noise at the
time points of interest. If we simulate a
stochastic dynamical model, we do not add
any additional noise to the trajectories. We
compare the simulated data set D∗ (circles)
to the experimental data D0 (crosses) using
a distance function, d, and tolerance ϵ; if
d(D0, D∗) ≤ ϵ, we accept θ∗. The tolerance
ϵ ≥ 0 is the desired level of agreement between
D0 and D∗.

(c) The particle θ∗ is accepted because
D∗ and D0 are sufficiently close.

(d) We sample another parameter θ∗ from the
prior distribution and simulate a corresponding
dataset D∗. In this case D∗ and D0 are very
different and we reject the particle (we ”throw
it away”).

(e) We repeat the whole procedure until
N particles have been accepted. They repre-
sent a sample from P (θ|d(D0, D∗) ≤ ϵ), which
approximates the posterior distribution. If
ϵ is sufficiently small then the distribution
P (θ|d(D0, D∗) ≤ ϵ) will be a good approxi-
mation for the “true” posterior distribution,
P (θ|D0).

(f) Many particles were rejected in the
procedure, for which we have spent a lot of
computational effort for simulation. ABC
rejection is therefore computationally ineffi-
cient. We can use ABC SMC to reduce the
computational cost.
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Figure 1: Schematic representation of ABC re-
jection.
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(a) We define a prior dist ribut ion P(θ)
and we would like to approximate the posterior
dist ribut ion P(θ|D0). We start by sampling a
parameter θ∗ from the prior dist ribut ion. We
call this sampled parameter a particle.

(b) We simulate a data set D ∗ according
to some simulat ion framework f (D |θ∗). In
our examples we use different simulat ion
frameworks. If we simulate a determinist ic
dynamical model, we add some noise at the
t ime points of interest . If we simulate a
stochast ic dynamical model, we do not add
any addit ional noise to the t rajectories. We
compare the simulated data set D ∗ (circles)
to the experimental data D0 (crosses) using
a distance funct ion, d, and tolerance ϵ; if
d(D0, D ∗) ≤ ϵ, we accept θ∗. The tolerance
ϵ ≥ 0 is the desired level of agreement between
D0 and D ∗.

(c) The part icle θ∗ is accepted because
D ∗ and D0 are sufficient ly close.

(d) We sample another parameter θ∗ from the
prior dist ribut ion and simulate a corresponding
dataset D ∗. In this case D ∗ and D0 are very
different and we reject the part icle (we ” throw
it away” ).

(e) We repeat the whole procedure unt il
N part icles have been accepted. They repre-
sent a sample from P(θ|d(D0, D ∗) ≤ ϵ), which
approximates the posterior dist ribut ion. If
ϵ is sufficient ly small then the dist ribut ion
P(θ|d(D0, D ∗) ≤ ϵ) will be a good approxi-
mat ion for the “ t rue” posterior dist ribut ion,
P(θ|D0).

(f ) Many part icles were rejected in the
procedure, for which we have spent a lot of
computat ional effort for simulat ion. ABC
reject ion is therefore computat ionally ineffi-
cient . We can use ABC SMC to reduce the
computat ional cost .
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Figure 1: Schemat ic representat ion of ABC re-
ject ion.
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(a) We define a prior dist ribut ion P(θ)
and we would like to approximate the posterior
dist ribut ion P(θ|D0). We start by sampling a
parameter θ∗ from the prior dist ribut ion. We
call this sampled parameter a particle.

(b) We simulate a data set D ∗ according
to some simulat ion framework f (D |θ∗). In
our examples we use different simulat ion
frameworks. If we simulate a determinist ic
dynamical model, we add some noise at the
t ime points of interest . If we simulate a
stochast ic dynamical model, we do not add
any addit ional noise to the t rajectories. We
compare the simulated data set D ∗ (circles)
to the experimental data D0 (crosses) using
a distance funct ion, d, and tolerance ϵ; if
d(D0, D ∗) ≤ ϵ, we accept θ∗. The tolerance
ϵ ≥ 0 is the desired level of agreement between
D0 and D ∗.

(c) The part icle θ∗ is accepted because
D ∗ and D0 are sufficient ly close.

(d) We sample another parameter θ∗ from the
prior dist ribut ion and simulate a corresponding
dataset D ∗. In this case D ∗ and D0 are very
different and we reject the part icle (we ” throw
it away” ).

(e) We repeat the whole procedure unt il
N part icles have been accepted. They repre-
sent a sample from P(θ|d(D0, D ∗) ≤ ϵ), which
approximates the posterior dist ribut ion. If
ϵ is sufficient ly small then the dist ribut ion
P(θ|d(D0, D ∗) ≤ ϵ) will be a good approxi-
mat ion for the “ t rue” posterior dist ribut ion,
P(θ|D0).

(f ) Many part icles were rejected in the
procedure, for which we have spent a lot of
computat ional effort for simulat ion. ABC
reject ion is therefore computat ionally ineffi-
cient . We can use ABC SMC to reduce the
computat ional cost .
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Figure 1: Schemat ic representat ion of ABC re-
ject ion.
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1. Sample parameter θ from prior distribution p(θ)

2. Simulate process x ∼ p(x|θ)
3. Accept θ if d(x, xobs) < ϵ

ABC rejection

(a) We define a prior distribution P (θ)
and we would like to approximate the posterior
distribution P (θ|D0). We start by sampling a
parameter θ∗ from the prior distribution. We
call this sampled parameter a particle.

(b) We simulate a data set D∗ according
to some simulation framework f(D|θ∗). In
our examples we use different simulation
frameworks. If we simulate a deterministic
dynamical model, we add some noise at the
time points of interest. If we simulate a
stochastic dynamical model, we do not add
any additional noise to the trajectories. We
compare the simulated data set D∗ (circles)
to the experimental data D0 (crosses) using
a distance function, d, and tolerance ϵ; if
d(D0, D∗) ≤ ϵ, we accept θ∗. The tolerance
ϵ ≥ 0 is the desired level of agreement between
D0 and D∗.

(c) The particle θ∗ is accepted because
D∗ and D0 are sufficiently close.

(d) We sample another parameter θ∗ from the
prior distribution and simulate a corresponding
dataset D∗. In this case D∗ and D0 are very
different and we reject the particle (we ”throw
it away”).

(e) We repeat the whole procedure until
N particles have been accepted. They repre-
sent a sample from P (θ|d(D0, D∗) ≤ ϵ), which
approximates the posterior distribution. If
ϵ is sufficiently small then the distribution
P (θ|d(D0, D∗) ≤ ϵ) will be a good approxi-
mation for the “true” posterior distribution,
P (θ|D0).

(f) Many particles were rejected in the
procedure, for which we have spent a lot of
computational effort for simulation. ABC
rejection is therefore computationally ineffi-
cient. We can use ABC SMC to reduce the
computational cost.
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Figure 1: Schematic representation of ABC re-
jection.
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(a) We define a prior dist ribut ion P(θ)
and we would like to approximate the posterior
dist ribut ion P(θ|D0). We start by sampling a
parameter θ∗ from the prior dist ribut ion. We
call this sampled parameter a particle.

(b) We simulate a data set D ∗ according
to some simulat ion framework f (D |θ∗). In
our examples we use different simulat ion
frameworks. If we simulate a determinist ic
dynamical model, we add some noise at the
t ime points of interest . If we simulate a
stochast ic dynamical model, we do not add
any addit ional noise to the t rajectories. We
compare the simulated data set D ∗ (circles)
to the experimental data D0 (crosses) using
a distance funct ion, d, and tolerance ϵ; if
d(D0, D ∗) ≤ ϵ, we accept θ∗. The tolerance
ϵ ≥ 0 is the desired level of agreement between
D0 and D ∗.

(c) The part icle θ∗ is accepted because
D ∗ and D0 are sufficient ly close.

(d) We sample another parameter θ∗ from the
prior dist ribut ion and simulate a corresponding
dataset D ∗. In this case D ∗ and D0 are very
different and we reject the part icle (we ” throw
it away” ).

(e) We repeat the whole procedure unt il
N part icles have been accepted. They repre-
sent a sample from P(θ|d(D0, D ∗) ≤ ϵ), which
approximates the posterior dist ribut ion. If
ϵ is sufficient ly small then the dist ribut ion
P(θ|d(D0, D ∗) ≤ ϵ) will be a good approxi-
mat ion for the “ t rue” posterior dist ribut ion,
P(θ|D0).

(f ) Many part icles were rejected in the
procedure, for which we have spent a lot of
computat ional effort for simulat ion. ABC
reject ion is therefore computat ionally ineffi-
cient . We can use ABC SMC to reduce the
computat ional cost .
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Figure 1: Schemat ic representat ion of ABC re-
ject ion.
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(a) We define a prior dist ribut ion P(θ)
and we would like to approximate the posterior
dist ribut ion P(θ|D0). We start by sampling a
parameter θ∗ from the prior dist ribut ion. We
call this sampled parameter a particle.

(b) We simulate a data set D ∗ according
to some simulat ion framework f (D |θ∗). In
our examples we use different simulat ion
frameworks. If we simulate a determinist ic
dynamical model, we add some noise at the
t ime points of interest . If we simulate a
stochast ic dynamical model, we do not add
any addit ional noise to the t rajectories. We
compare the simulated data set D ∗ (circles)
to the experimental data D0 (crosses) using
a distance funct ion, d, and tolerance ϵ; if
d(D0, D ∗) ≤ ϵ, we accept θ∗. The tolerance
ϵ ≥ 0 is the desired level of agreement between
D0 and D ∗.

(c) The part icle θ∗ is accepted because
D ∗ and D0 are sufficient ly close.

(d) We sample another parameter θ∗ from the
prior dist ribut ion and simulate a corresponding
dataset D ∗. In this case D ∗ and D0 are very
different and we reject the part icle (we ” throw
it away” ).

(e) We repeat the whole procedure unt il
N part icles have been accepted. They repre-
sent a sample from P(θ|d(D0, D ∗) ≤ ϵ), which
approximates the posterior dist ribut ion. If
ϵ is sufficient ly small then the dist ribut ion
P(θ|d(D0, D ∗) ≤ ϵ) will be a good approxi-
mat ion for the “ t rue” posterior dist ribut ion,
P(θ|D0).

(f ) Many part icles were rejected in the
procedure, for which we have spent a lot of
computat ional effort for simulat ion. ABC
reject ion is therefore computat ionally ineffi-
cient . We can use ABC SMC to reduce the
computat ional cost .
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Figure 1: Schemat ic representat ion of ABC re-
ject ion.
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ȳ 1 ȳ 2 ȳ
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1. Approximate Bayesian Computation 
Idea: Approximate posterior distribution without calculation of the likelihood
1. Initialize thresholds                        for T populations
2. Set population index t = 1

For i = 1,...M, where M is the number of particles in one population
- Simulate                   (prior) and                      until     
- Set

3. For t = 2, … ,T, for i = 1, … , M
- Pick       from the                with probabilities 
- Draw                                (perturbation kernel) and                       until 
- Compute new weights as

Normalize         over i =1, … , M
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data using the crossmatch test
Carolin Loos, Carsten Marr, Jan Hasenauer

References
[1] Del Moral, Pierre, Arnaud Doucet, and Ajay Jasra. "An adaptive sequential Monte Carlo method for approximate Bayesian computation." Statistics and Computing 22.5 (2012): 1009-1020.
[2] Kolmogorov, Vladimir. "Blossom V: a new implementation of a minimum cost perfect matching algorithm." Mathematical Programming Computation 1.1 (2009): 43-67.
[3] Rosenbaum, Paul R. "An exact distribution free test comparing two multivariate distributions based on adjacency." Journal of the Royal Statistical Society: Series B (Statistical Methodology) 67.4 (2005): 515-530.
[4] Lillacci, Gabriele, and Mustafa Khammash. "The signal within the noise: eff icient inference of stochastic gene regulation models using f luorescence histograms and stochastic simulations." Bioinformatics 29.18 (2013): 2311-2319.

2. The crossmatch test statistic
● Do n observed samples and m simulated samples belong to the same multivariate 

distribution?
● Test statistic has to be exact, multivariate and distribution-free
● Rosenbaums presented crossmatch test [3] is based on a complete graph
● Nodes corresponds to samples and edge weights correspond to distances between samples 
● Number of crossmatches (one node of a matched pair belongs to the samples, one to the 

simulations) of a minimum weight non-bipartite matching indicates whether all samples are 
from the same distribution  

● Under the null hypothesis

  where       the number of node pairs with exactly k observation nodes, N = n+m and I=N/2 
● Used for a criterion in the ABC SMC to decide whether to accept or reject a proposed values
=> Accept particles which produce more than      crossmatches:  
 

?

PO

4. Toy data: Multivariate normal random variables 5. Toy data: Time series of a birth-death process

● n = 50 trajectories of a birth-death process 
● m = 50 trajectories simulated with Gillespies 

stochastic simulation algorithm (SSA)  

How can we estimate parameters of multivariate data?
The method presented here will be used to estimate the parameters of a multivariate 
stochastic system by considering e.g. single cell time-series data. The method uses an 
Approximate Bayesian Computation scheme with sequential Monte Carlo (ABC SMC). The 
decision of accepting or rejecting a proposed parameter set is based on the crossmatch 
statistics [3], an exact multivariate and distribution free statistic. The method was tested with 
multivariate normal random variables and time series data of a simple birth-death process.

3. Implementation
● The code used for the matching is a C ++ implementation of 

the algorithm Blossom V [2]
● The f igure on the right side shows the runtime compared to a 

non-perfect matching algorithm in Matlab 

P

Future work 
● Comparison with other methods e.g. INSIGHT [4], a method to estimate parameters based on histograms: How much information do we gain by looking at time series instead of histograms? 
● Comparison of different distance measures for time series and comparison of crossmatch test with other summary statistics for the rejection step in the ABC SMC 
● Improvement of performance by testing different perturbation kernels and increasing the acceptance rate for the f irst population of the ABC SMC
● Application of method to real data (e.g. single-cell time series data of transcription factor Nanog)

● n = 50 samples of               with
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● M = 450 simulated data points per iteration
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  Approximate Bayesian Computation rejection

 Figure modified from Toni et al., Bioinformatics (2010) 6

Goal: Approximate posterior distribution of     given data D 
p(θ)
θ
p(θ|D)1. Sample from prior distribution

2. Simulate data set

3. Accept or reject sampled parameter with respect to distance 
between simulated and observed data

Approximate Bayesian Computation rejection

Given: Data xobs

1. Sample parameter θ from prior distribution p(θ)

2. Simulate process x ∼ p(x|θ)
3. Accept θ if d(x, xobs) < ϵ

ABC rejection

(a) We define a prior distribution P (θ)
and we would like to approximate the posterior
distribution P (θ|D0). We start by sampling a
parameter θ∗ from the prior distribution. We
call this sampled parameter a particle.

(b) We simulate a data set D∗ according
to some simulation framework f(D|θ∗). In
our examples we use different simulation
frameworks. If we simulate a deterministic
dynamical model, we add some noise at the
time points of interest. If we simulate a
stochastic dynamical model, we do not add
any additional noise to the trajectories. We
compare the simulated data set D∗ (circles)
to the experimental data D0 (crosses) using
a distance function, d, and tolerance ϵ; if
d(D0, D∗) ≤ ϵ, we accept θ∗. The tolerance
ϵ ≥ 0 is the desired level of agreement between
D0 and D∗.

(c) The particle θ∗ is accepted because
D∗ and D0 are sufficiently close.

(d) We sample another parameter θ∗ from the
prior distribution and simulate a corresponding
dataset D∗. In this case D∗ and D0 are very
different and we reject the particle (we ”throw
it away”).

(e) We repeat the whole procedure until
N particles have been accepted. They repre-
sent a sample from P (θ|d(D0, D∗) ≤ ϵ), which
approximates the posterior distribution. If
ϵ is sufficiently small then the distribution
P (θ|d(D0, D∗) ≤ ϵ) will be a good approxi-
mation for the “true” posterior distribution,
P (θ|D0).

(f) Many particles were rejected in the
procedure, for which we have spent a lot of
computational effort for simulation. ABC
rejection is therefore computationally ineffi-
cient. We can use ABC SMC to reduce the
computational cost.
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Figure 1: Schematic representation of ABC re-
jection.
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(a) We define a prior dist ribut ion P(θ)
and we would like to approximate the posterior
dist ribut ion P(θ|D0). We start by sampling a
parameter θ∗ from the prior dist ribut ion. We
call this sampled parameter a particle.

(b) We simulate a data set D ∗ according
to some simulat ion framework f (D |θ∗). In
our examples we use different simulat ion
frameworks. If we simulate a determinist ic
dynamical model, we add some noise at the
t ime points of interest . If we simulate a
stochast ic dynamical model, we do not add
any addit ional noise to the t rajectories. We
compare the simulated data set D ∗ (circles)
to the experimental data D0 (crosses) using
a distance funct ion, d, and tolerance ϵ; if
d(D0, D ∗) ≤ ϵ, we accept θ∗. The tolerance
ϵ ≥ 0 is the desired level of agreement between
D0 and D ∗.

(c) The part icle θ∗ is accepted because
D ∗ and D0 are sufficient ly close.

(d) We sample another parameter θ∗ from the
prior dist ribut ion and simulate a corresponding
dataset D ∗. In this case D ∗ and D0 are very
different and we reject the part icle (we ” throw
it away” ).

(e) We repeat the whole procedure unt il
N part icles have been accepted. They repre-
sent a sample from P(θ|d(D0, D ∗) ≤ ϵ), which
approximates the posterior dist ribut ion. If
ϵ is sufficient ly small then the dist ribut ion
P(θ|d(D0, D ∗) ≤ ϵ) will be a good approxi-
mat ion for the “ t rue” posterior dist ribut ion,
P(θ|D0).

(f ) Many part icles were rejected in the
procedure, for which we have spent a lot of
computat ional effort for simulat ion. ABC
reject ion is therefore computat ionally ineffi-
cient . We can use ABC SMC to reduce the
computat ional cost .
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Figure 1: Schemat ic representat ion of ABC re-
ject ion.
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(a) We define a prior dist ribut ion P(θ)
and we would like to approximate the posterior
dist ribut ion P(θ|D0). We start by sampling a
parameter θ∗ from the prior dist ribut ion. We
call this sampled parameter a particle.

(b) We simulate a data set D ∗ according
to some simulat ion framework f (D |θ∗). In
our examples we use different simulat ion
frameworks. If we simulate a determinist ic
dynamical model, we add some noise at the
t ime points of interest . If we simulate a
stochast ic dynamical model, we do not add
any addit ional noise to the t rajectories. We
compare the simulated data set D ∗ (circles)
to the experimental data D0 (crosses) using
a distance funct ion, d, and tolerance ϵ; if
d(D0, D ∗) ≤ ϵ, we accept θ∗. The tolerance
ϵ ≥ 0 is the desired level of agreement between
D0 and D ∗.

(c) The part icle θ∗ is accepted because
D ∗ and D0 are sufficient ly close.

(d) We sample another parameter θ∗ from the
prior dist ribut ion and simulate a corresponding
dataset D ∗. In this case D ∗ and D0 are very
different and we reject the part icle (we ” throw
it away” ).

(e) We repeat the whole procedure unt il
N part icles have been accepted. They repre-
sent a sample from P(θ|d(D0, D ∗) ≤ ϵ), which
approximates the posterior dist ribut ion. If
ϵ is sufficient ly small then the dist ribut ion
P(θ|d(D0, D ∗) ≤ ϵ) will be a good approxi-
mat ion for the “ t rue” posterior dist ribut ion,
P(θ|D0).
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Figure 1: Schemat ic representat ion of ABC re-
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o

observed data 

time

ob
se

rv
ab

le

     prior        posterioro

Approximate Bayesian Computation rejection

Given: Data xobs

1. Sample parameter θ from prior distribution p(θ)

2. Simulate process x ∼ p(x|θ)
3. Accept θ if d(x, xobs) < ϵ

ABC rejection

(a) We define a prior distribution P (θ)
and we would like to approximate the posterior
distribution P (θ|D0). We start by sampling a
parameter θ∗ from the prior distribution. We
call this sampled parameter a particle.

(b) We simulate a data set D∗ according
to some simulation framework f(D|θ∗). In
our examples we use different simulation
frameworks. If we simulate a deterministic
dynamical model, we add some noise at the
time points of interest. If we simulate a
stochastic dynamical model, we do not add
any additional noise to the trajectories. We
compare the simulated data set D∗ (circles)
to the experimental data D0 (crosses) using
a distance function, d, and tolerance ϵ; if
d(D0, D∗) ≤ ϵ, we accept θ∗. The tolerance
ϵ ≥ 0 is the desired level of agreement between
D0 and D∗.

(c) The particle θ∗ is accepted because
D∗ and D0 are sufficiently close.

(d) We sample another parameter θ∗ from the
prior distribution and simulate a corresponding
dataset D∗. In this case D∗ and D0 are very
different and we reject the particle (we ”throw
it away”).

(e) We repeat the whole procedure until
N particles have been accepted. They repre-
sent a sample from P (θ|d(D0, D∗) ≤ ϵ), which
approximates the posterior distribution. If
ϵ is sufficiently small then the distribution
P (θ|d(D0, D∗) ≤ ϵ) will be a good approxi-
mation for the “true” posterior distribution,
P (θ|D0).

(f) Many particles were rejected in the
procedure, for which we have spent a lot of
computational effort for simulation. ABC
rejection is therefore computationally ineffi-
cient. We can use ABC SMC to reduce the
computational cost.

ABC for dynamical systems

ABC framework for dynamical systems

Prior Posterior
P(θ) P(θ|D0)

x

x
x

x

time

o

o
o

o
o

o
o

o

Tina Toni ABC SMC 26/06/2009 3 / 3

(a)

ABC for dynamical systems

ABC framework for dynamical systems

Prior Posterior
P(θ) P(θ|D)

x

x
x

x

t ime

o

o
o

o

o

o
o

o

Tina Toni ABC SMC 26/ 06/ 2009 4 / 24

(b)

ABC for dynamical systems

ABC framework for dynamical systems

Prior Posterior
P(θ) P(θ|D0)

x

x
x

x

t ime

o

o
o

o

o

o
o

o

Tina Toni ABC SMC 26/ 06/ 2009 3 / 3

(c)

ABC for dynamical systems

ABC framework for dynamical systems

Prior Posterior
P(θ) P(θ|D0)

x

x
x

x

t ime

o

o
o

o

o

o
o

o

Tina Toni ABC SMC 26/ 06/ 2009 3 / 3

(d)ABC framework for dynamical systems

Prior Posterior
P(θ) P(θ|D0)

x

x
x

x

t ime

o

o
o

o
o

o
o

o

August 2, 2009 1 / 1

(e)

ABC for dynamical systems

ABC framework for dynamical systems

Prior Posterior
P(θ) P(θ|D)

x

x
x

x

t ime

o

o
o

o
o

o
o

o

Tina Toni ABC SMC 26/ 06/ 2009 4 / 24

(f)

Figure 1: Schematic representation of ABC re-
jection.
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(a) We define a prior dist ribut ion P(θ)
and we would like to approximate the posterior
dist ribut ion P(θ|D0). We start by sampling a
parameter θ∗ from the prior dist ribut ion. We
call this sampled parameter a particle.

(b) We simulate a data set D ∗ according
to some simulat ion framework f (D |θ∗). In
our examples we use different simulat ion
frameworks. If we simulate a determinist ic
dynamical model, we add some noise at the
t ime points of interest . If we simulate a
stochast ic dynamical model, we do not add
any addit ional noise to the t rajectories. We
compare the simulated data set D ∗ (circles)
to the experimental data D0 (crosses) using
a distance funct ion, d, and tolerance ϵ; if
d(D0, D ∗) ≤ ϵ, we accept θ∗. The tolerance
ϵ ≥ 0 is the desired level of agreement between
D0 and D ∗.

(c) The part icle θ∗ is accepted because
D ∗ and D0 are sufficient ly close.

(d) We sample another parameter θ∗ from the
prior dist ribut ion and simulate a corresponding
dataset D ∗. In this case D ∗ and D0 are very
different and we reject the part icle (we ” throw
it away” ).

(e) We repeat the whole procedure unt il
N part icles have been accepted. They repre-
sent a sample from P(θ|d(D0, D ∗) ≤ ϵ), which
approximates the posterior dist ribut ion. If
ϵ is sufficient ly small then the dist ribut ion
P(θ|d(D0, D ∗) ≤ ϵ) will be a good approxi-
mat ion for the “ t rue” posterior dist ribut ion,
P(θ|D0).

(f ) Many part icles were rejected in the
procedure, for which we have spent a lot of
computat ional effort for simulat ion. ABC
reject ion is therefore computat ionally ineffi-
cient . We can use ABC SMC to reduce the
computat ional cost .
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Figure 1: Schemat ic representat ion of ABC re-
ject ion.
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(a) We define a prior dist ribut ion P(θ)
and we would like to approximate the posterior
dist ribut ion P(θ|D0). We start by sampling a
parameter θ∗ from the prior dist ribut ion. We
call this sampled parameter a particle.

(b) We simulate a data set D ∗ according
to some simulat ion framework f (D |θ∗). In
our examples we use different simulat ion
frameworks. If we simulate a determinist ic
dynamical model, we add some noise at the
t ime points of interest . If we simulate a
stochast ic dynamical model, we do not add
any addit ional noise to the t rajectories. We
compare the simulated data set D ∗ (circles)
to the experimental data D0 (crosses) using
a distance funct ion, d, and tolerance ϵ; if
d(D0, D ∗) ≤ ϵ, we accept θ∗. The tolerance
ϵ ≥ 0 is the desired level of agreement between
D0 and D ∗.

(c) The part icle θ∗ is accepted because
D ∗ and D0 are sufficient ly close.

(d) We sample another parameter θ∗ from the
prior dist ribut ion and simulate a corresponding
dataset D ∗. In this case D ∗ and D0 are very
different and we reject the part icle (we ” throw
it away” ).

(e) We repeat the whole procedure unt il
N part icles have been accepted. They repre-
sent a sample from P(θ|d(D0, D ∗) ≤ ϵ), which
approximates the posterior dist ribut ion. If
ϵ is sufficient ly small then the dist ribut ion
P(θ|d(D0, D ∗) ≤ ϵ) will be a good approxi-
mat ion for the “ t rue” posterior dist ribut ion,
P(θ|D0).

(f ) Many part icles were rejected in the
procedure, for which we have spent a lot of
computat ional effort for simulat ion. ABC
reject ion is therefore computat ionally ineffi-
cient . We can use ABC SMC to reduce the
computat ional cost .
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Figure 1: Schemat ic representat ion of ABC re-
ject ion.
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Approximate Bayesian Computation rejection

Given: Data xobs

1. Sample parameter θ from prior distribution p(θ)

2. Simulate process x ∼ p(x|θ)
3. Accept θ if d(x, xobs) < ϵ

ABC rejection

(a) We define a prior distribution P (θ)
and we would like to approximate the posterior
distribution P (θ|D0). We start by sampling a
parameter θ∗ from the prior distribution. We
call this sampled parameter a particle.

(b) We simulate a data set D∗ according
to some simulation framework f(D|θ∗). In
our examples we use different simulation
frameworks. If we simulate a deterministic
dynamical model, we add some noise at the
time points of interest. If we simulate a
stochastic dynamical model, we do not add
any additional noise to the trajectories. We
compare the simulated data set D∗ (circles)
to the experimental data D0 (crosses) using
a distance function, d, and tolerance ϵ; if
d(D0, D∗) ≤ ϵ, we accept θ∗. The tolerance
ϵ ≥ 0 is the desired level of agreement between
D0 and D∗.

(c) The particle θ∗ is accepted because
D∗ and D0 are sufficiently close.

(d) We sample another parameter θ∗ from the
prior distribution and simulate a corresponding
dataset D∗. In this case D∗ and D0 are very
different and we reject the particle (we ”throw
it away”).

(e) We repeat the whole procedure until
N particles have been accepted. They repre-
sent a sample from P (θ|d(D0, D∗) ≤ ϵ), which
approximates the posterior distribution. If
ϵ is sufficiently small then the distribution
P (θ|d(D0, D∗) ≤ ϵ) will be a good approxi-
mation for the “true” posterior distribution,
P (θ|D0).

(f) Many particles were rejected in the
procedure, for which we have spent a lot of
computational effort for simulation. ABC
rejection is therefore computationally ineffi-
cient. We can use ABC SMC to reduce the
computational cost.
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Figure 1: Schematic representation of ABC re-
jection.
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(a) We define a prior dist ribut ion P(θ)
and we would like to approximate the posterior
dist ribut ion P(θ|D0). We start by sampling a
parameter θ∗ from the prior dist ribut ion. We
call this sampled parameter a particle.

(b) We simulate a data set D ∗ according
to some simulat ion framework f (D |θ∗). In
our examples we use different simulat ion
frameworks. If we simulate a determinist ic
dynamical model, we add some noise at the
t ime points of interest . If we simulate a
stochast ic dynamical model, we do not add
any addit ional noise to the t rajectories. We
compare the simulated data set D ∗ (circles)
to the experimental data D0 (crosses) using
a distance funct ion, d, and tolerance ϵ; if
d(D0, D ∗) ≤ ϵ, we accept θ∗. The tolerance
ϵ ≥ 0 is the desired level of agreement between
D0 and D ∗.

(c) The part icle θ∗ is accepted because
D ∗ and D0 are sufficient ly close.

(d) We sample another parameter θ∗ from the
prior dist ribut ion and simulate a corresponding
dataset D ∗. In this case D ∗ and D0 are very
different and we reject the part icle (we ” throw
it away” ).

(e) We repeat the whole procedure unt il
N part icles have been accepted. They repre-
sent a sample from P(θ|d(D0, D ∗) ≤ ϵ), which
approximates the posterior dist ribut ion. If
ϵ is sufficient ly small then the dist ribut ion
P(θ|d(D0, D ∗) ≤ ϵ) will be a good approxi-
mat ion for the “ t rue” posterior dist ribut ion,
P(θ|D0).

(f ) Many part icles were rejected in the
procedure, for which we have spent a lot of
computat ional effort for simulat ion. ABC
reject ion is therefore computat ionally ineffi-
cient . We can use ABC SMC to reduce the
computat ional cost .
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Figure 1: Schemat ic representat ion of ABC re-
ject ion.
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(a) We define a prior dist ribut ion P(θ)
and we would like to approximate the posterior
dist ribut ion P(θ|D0). We start by sampling a
parameter θ∗ from the prior dist ribut ion. We
call this sampled parameter a particle.

(b) We simulate a data set D ∗ according
to some simulat ion framework f (D |θ∗). In
our examples we use different simulat ion
frameworks. If we simulate a determinist ic
dynamical model, we add some noise at the
t ime points of interest . If we simulate a
stochast ic dynamical model, we do not add
any addit ional noise to the t rajectories. We
compare the simulated data set D ∗ (circles)
to the experimental data D0 (crosses) using
a distance funct ion, d, and tolerance ϵ; if
d(D0, D ∗) ≤ ϵ, we accept θ∗. The tolerance
ϵ ≥ 0 is the desired level of agreement between
D0 and D ∗.

(c) The part icle θ∗ is accepted because
D ∗ and D0 are sufficient ly close.

(d) We sample another parameter θ∗ from the
prior dist ribut ion and simulate a corresponding
dataset D ∗. In this case D ∗ and D0 are very
different and we reject the part icle (we ” throw
it away” ).

(e) We repeat the whole procedure unt il
N part icles have been accepted. They repre-
sent a sample from P(θ|d(D0, D ∗) ≤ ϵ), which
approximates the posterior dist ribut ion. If
ϵ is sufficient ly small then the dist ribut ion
P(θ|d(D0, D ∗) ≤ ϵ) will be a good approxi-
mat ion for the “ t rue” posterior dist ribut ion,
P(θ|D0).

(f ) Many part icles were rejected in the
procedure, for which we have spent a lot of
computat ional effort for simulat ion. ABC
reject ion is therefore computat ionally ineffi-
cient . We can use ABC SMC to reduce the
computat ional cost .
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Figure 1: Schemat ic representat ion of ABC re-
ject ion.
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Approximate Bayesian Computation rejection

Given: Data xobs

1. Sample parameter θ from prior distribution p(θ)

2. Simulate process x ∼ p(x|θ)
3. Accept θ if d(x, xobs) < ϵ

ABC rejection

(a) We define a prior distribution P (θ)
and we would like to approximate the posterior
distribution P (θ|D0). We start by sampling a
parameter θ∗ from the prior distribution. We
call this sampled parameter a particle.

(b) We simulate a data set D∗ according
to some simulation framework f(D|θ∗). In
our examples we use different simulation
frameworks. If we simulate a deterministic
dynamical model, we add some noise at the
time points of interest. If we simulate a
stochastic dynamical model, we do not add
any additional noise to the trajectories. We
compare the simulated data set D∗ (circles)
to the experimental data D0 (crosses) using
a distance function, d, and tolerance ϵ; if
d(D0, D∗) ≤ ϵ, we accept θ∗. The tolerance
ϵ ≥ 0 is the desired level of agreement between
D0 and D∗.

(c) The particle θ∗ is accepted because
D∗ and D0 are sufficiently close.

(d) We sample another parameter θ∗ from the
prior distribution and simulate a corresponding
dataset D∗. In this case D∗ and D0 are very
different and we reject the particle (we ”throw
it away”).

(e) We repeat the whole procedure until
N particles have been accepted. They repre-
sent a sample from P (θ|d(D0, D∗) ≤ ϵ), which
approximates the posterior distribution. If
ϵ is sufficiently small then the distribution
P (θ|d(D0, D∗) ≤ ϵ) will be a good approxi-
mation for the “true” posterior distribution,
P (θ|D0).

(f) Many particles were rejected in the
procedure, for which we have spent a lot of
computational effort for simulation. ABC
rejection is therefore computationally ineffi-
cient. We can use ABC SMC to reduce the
computational cost.
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Figure 1: Schematic representation of ABC re-
jection.
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A B C r eject ion

(a) We define a prior dist ribut ion P(θ)
and we would like to approximate the posterior
dist ribut ion P(θ|D0). We start by sampling a
parameter θ∗ from the prior dist ribut ion. We
call this sampled parameter a particle.

(b) We simulate a data set D ∗ according
to some simulat ion framework f (D |θ∗). In
our examples we use different simulat ion
frameworks. If we simulate a determinist ic
dynamical model, we add some noise at the
t ime points of interest . If we simulate a
stochast ic dynamical model, we do not add
any addit ional noise to the t rajectories. We
compare the simulated data set D ∗ (circles)
to the experimental data D0 (crosses) using
a distance funct ion, d, and tolerance ϵ; if
d(D0, D ∗) ≤ ϵ, we accept θ∗. The tolerance
ϵ ≥ 0 is the desired level of agreement between
D0 and D ∗.

(c) The part icle θ∗ is accepted because
D ∗ and D0 are sufficient ly close.

(d) We sample another parameter θ∗ from the
prior dist ribut ion and simulate a corresponding
dataset D ∗. In this case D ∗ and D0 are very
different and we reject the part icle (we ” throw
it away” ).

(e) We repeat the whole procedure unt il
N part icles have been accepted. They repre-
sent a sample from P(θ|d(D0, D ∗) ≤ ϵ), which
approximates the posterior dist ribut ion. If
ϵ is sufficient ly small then the dist ribut ion
P(θ|d(D0, D ∗) ≤ ϵ) will be a good approxi-
mat ion for the “ t rue” posterior dist ribut ion,
P(θ|D0).

(f ) Many part icles were rejected in the
procedure, for which we have spent a lot of
computat ional effort for simulat ion. ABC
reject ion is therefore computat ionally ineffi-
cient . We can use ABC SMC to reduce the
computat ional cost .
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Figure 1: Schemat ic representat ion of ABC re-
ject ion.
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(a) We define a prior dist ribut ion P(θ)
and we would like to approximate the posterior
dist ribut ion P(θ|D0). We start by sampling a
parameter θ∗ from the prior dist ribut ion. We
call this sampled parameter a particle.

(b) We simulate a data set D ∗ according
to some simulat ion framework f (D |θ∗). In
our examples we use different simulat ion
frameworks. If we simulate a determinist ic
dynamical model, we add some noise at the
t ime points of interest . If we simulate a
stochast ic dynamical model, we do not add
any addit ional noise to the t rajectories. We
compare the simulated data set D ∗ (circles)
to the experimental data D0 (crosses) using
a distance funct ion, d, and tolerance ϵ; if
d(D0, D ∗) ≤ ϵ, we accept θ∗. The tolerance
ϵ ≥ 0 is the desired level of agreement between
D0 and D ∗.

(c) The part icle θ∗ is accepted because
D ∗ and D0 are sufficient ly close.

(d) We sample another parameter θ∗ from the
prior dist ribut ion and simulate a corresponding
dataset D ∗. In this case D ∗ and D0 are very
different and we reject the part icle (we ” throw
it away” ).

(e) We repeat the whole procedure unt il
N part icles have been accepted. They repre-
sent a sample from P(θ|d(D0, D ∗) ≤ ϵ), which
approximates the posterior dist ribut ion. If
ϵ is sufficient ly small then the dist ribut ion
P(θ|d(D0, D ∗) ≤ ϵ) will be a good approxi-
mat ion for the “ t rue” posterior dist ribut ion,
P(θ|D0).

(f ) Many part icles were rejected in the
procedure, for which we have spent a lot of
computat ional effort for simulat ion. ABC
reject ion is therefore computat ionally ineffi-
cient . We can use ABC SMC to reduce the
computat ional cost .
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Figure 1: Schemat ic representat ion of ABC re-
ject ion.
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ABC rejection

(a) We define a prior distribution P (θ)
and we would like to approximate the posterior
distribution P (θ|D0). We start by sampling a
parameter θ∗ from the prior distribution. We
call this sampled parameter a particle.

(b) We simulate a data set D∗ according
to some simulation framework f(D|θ∗). In
our examples we use different simulation
frameworks. If we simulate a deterministic
dynamical model, we add some noise at the
time points of interest. If we simulate a
stochastic dynamical model, we do not add
any additional noise to the trajectories. We
compare the simulated data set D∗ (circles)
to the experimental data D0 (crosses) using
a distance function, d, and tolerance ϵ; if
d(D0, D∗) ≤ ϵ, we accept θ∗. The tolerance
ϵ ≥ 0 is the desired level of agreement between
D0 and D∗.

(c) The particle θ∗ is accepted because
D∗ and D0 are sufficiently close.

(d) We sample another parameter θ∗ from the
prior distribution and simulate a corresponding
dataset D∗. In this case D∗ and D0 are very
different and we reject the particle (we ”throw
it away”).

(e) We repeat the whole procedure until
N particles have been accepted. They repre-
sent a sample from P (θ|d(D0, D∗) ≤ ϵ), which
approximates the posterior distribution. If
ϵ is sufficiently small then the distribution
P (θ|d(D0, D∗) ≤ ϵ) will be a good approxi-
mation for the “true” posterior distribution,
P (θ|D0).

(f) Many particles were rejected in the
procedure, for which we have spent a lot of
computational effort for simulation. ABC
rejection is therefore computationally ineffi-
cient. We can use ABC SMC to reduce the
computational cost.
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Figure 1: Schematic representation of ABC re-
jection.
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(a) We define a prior dist ribut ion P(θ)
and we would like to approximate the posterior
dist ribut ion P(θ|D0). We start by sampling a
parameter θ∗ from the prior dist ribut ion. We
call this sampled parameter a particle.

(b) We simulate a data set D ∗ according
to some simulat ion framework f (D |θ∗). In
our examples we use different simulat ion
frameworks. If we simulate a determinist ic
dynamical model, we add some noise at the
t ime points of interest . If we simulate a
stochast ic dynamical model, we do not add
any addit ional noise to the t rajectories. We
compare the simulated data set D ∗ (circles)
to the experimental data D0 (crosses) using
a distance funct ion, d, and tolerance ϵ; if
d(D0, D ∗) ≤ ϵ, we accept θ∗. The tolerance
ϵ ≥ 0 is the desired level of agreement between
D0 and D ∗.

(c) The part icle θ∗ is accepted because
D ∗ and D0 are sufficient ly close.

(d) We sample another parameter θ∗ from the
prior dist ribut ion and simulate a corresponding
dataset D ∗. In this case D ∗ and D0 are very
different and we reject the part icle (we ” throw
it away” ).

(e) We repeat the whole procedure unt il
N part icles have been accepted. They repre-
sent a sample from P(θ|d(D0, D ∗) ≤ ϵ), which
approximates the posterior dist ribut ion. If
ϵ is sufficient ly small then the dist ribut ion
P(θ|d(D0, D ∗) ≤ ϵ) will be a good approxi-
mat ion for the “ t rue” posterior dist ribut ion,
P(θ|D0).

(f ) Many part icles were rejected in the
procedure, for which we have spent a lot of
computat ional effort for simulat ion. ABC
reject ion is therefore computat ionally ineffi-
cient . We can use ABC SMC to reduce the
computat ional cost .
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Figure 1: Schemat ic representat ion of ABC re-
ject ion.
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(a) We define a prior dist ribut ion P(θ)
and we would like to approximate the posterior
dist ribut ion P(θ|D0). We start by sampling a
parameter θ∗ from the prior dist ribut ion. We
call this sampled parameter a particle.

(b) We simulate a data set D ∗ according
to some simulat ion framework f (D |θ∗). In
our examples we use different simulat ion
frameworks. If we simulate a determinist ic
dynamical model, we add some noise at the
t ime points of interest . If we simulate a
stochast ic dynamical model, we do not add
any addit ional noise to the t rajectories. We
compare the simulated data set D ∗ (circles)
to the experimental data D0 (crosses) using
a distance funct ion, d, and tolerance ϵ; if
d(D0, D ∗) ≤ ϵ, we accept θ∗. The tolerance
ϵ ≥ 0 is the desired level of agreement between
D0 and D ∗.

(c) The part icle θ∗ is accepted because
D ∗ and D0 are sufficient ly close.

(d) We sample another parameter θ∗ from the
prior dist ribut ion and simulate a corresponding
dataset D ∗. In this case D ∗ and D0 are very
different and we reject the part icle (we ” throw
it away” ).

(e) We repeat the whole procedure unt il
N part icles have been accepted. They repre-
sent a sample from P(θ|d(D0, D ∗) ≤ ϵ), which
approximates the posterior dist ribut ion. If
ϵ is sufficient ly small then the dist ribut ion
P(θ|d(D0, D ∗) ≤ ϵ) will be a good approxi-
mat ion for the “ t rue” posterior dist ribut ion,
P(θ|D0).

(f ) Many part icles were rejected in the
procedure, for which we have spent a lot of
computat ional effort for simulat ion. ABC
reject ion is therefore computat ionally ineffi-
cient . We can use ABC SMC to reduce the
computat ional cost .

ABC for dynamical systems

ABC framework for dynamical systems

Prior Posterior
P(θ) P(θ|D0)

x

x
x

x

t ime

o

o
o

o
o

o
o

o

Tina Toni ABC SMC 26/ 06/ 2009 3 / 3

(a)

ABC for dynamical systems

ABC framework for dynamical systems

Prior Posterior
P(θ) P(θ|D)

x

x
x

x

t ime

o

o
o

o

o

o
o

o

Tina Toni ABC SMC 26/ 06/ 2009 4 / 24

(b)

ABC for dynamical systems

ABC framework for dynamical systems

Prior Posterior
P(θ) P(θ|D0)

x

x
x

x

t ime

o

o
o

o

o

o
o

o

Tina Toni ABC SMC 26/ 06/ 2009 3 / 3

(c)

ABC for dynamical systems

ABC framework for dynamical systems

Prior Posterior
P(θ) P(θ|D0)

x

x
x

x

t ime

o

o
o

o

o

o
o

o

Tina Toni ABC SMC 26/ 06/ 2009 3 / 3

(d)ABC framework for dynamical systems

Prior Posterior
P(θ) P(θ|D0)

x

x
x

x

t ime

o

o
o

o
o

o
o

o

August 2, 2009 1 / 1

(e)

ABC for dynamical systems

ABC framework for dynamical systems

Prior Posterior
P(θ) P(θ|D)

x

x
x

x

t ime

o

o
o

o
o

o
o

o

Tina Toni ABC SMC 26/ 06/ 2009 4 / 24

(f )

Figure 1: Schemat ic representat ion of ABC re-
ject ion.
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1. Approximate Bayesian Computation 
Idea: Approximate posterior distribution without calculation of the likelihood
1. Initialize thresholds                        for T populations
2. Set population index t = 1

For i = 1,...M, where M is the number of particles in one population
- Simulate                   (prior) and                      until     
- Set

3. For t = 2, … ,T, for i = 1, … , M
- Pick       from the                with probabilities 
- Draw                                (perturbation kernel) and                       until 
- Compute new weights as

Normalize         over i =1, … , M

Approximate Bayesian Computation for multivariate 
data using the crossmatch test
Carolin Loos, Carsten Marr, Jan Hasenauer
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2. The crossmatch test statistic
● Do n observed samples and m simulated samples belong to the same multivariate 

distribution?
● Test statistic has to be exact, multivariate and distribution-free
● Rosenbaums presented crossmatch test [3] is based on a complete graph
● Nodes corresponds to samples and edge weights correspond to distances between samples 
● Number of crossmatches (one node of a matched pair belongs to the samples, one to the 

simulations) of a minimum weight non-bipartite matching indicates whether all samples are 
from the same distribution  

● Under the null hypothesis

  where       the number of node pairs with exactly k observation nodes, N = n+m and I=N/2 
● Used for a criterion in the ABC SMC to decide whether to accept or reject a proposed values
=> Accept particles which produce more than      crossmatches:  
 

?

PO

4. Toy data: Multivariate normal random variables 5. Toy data: Time series of a birth-death process

● n = 50 trajectories of a birth-death process 
● m = 50 trajectories simulated with Gillespies 

stochastic simulation algorithm (SSA)  

How can we estimate parameters of multivariate data?
The method presented here will be used to estimate the parameters of a multivariate 
stochastic system by considering e.g. single cell time-series data. The method uses an 
Approximate Bayesian Computation scheme with sequential Monte Carlo (ABC SMC). The 
decision of accepting or rejecting a proposed parameter set is based on the crossmatch 
statistics [3], an exact multivariate and distribution free statistic. The method was tested with 
multivariate normal random variables and time series data of a simple birth-death process.

3. Implementation
● The code used for the matching is a C ++ implementation of 

the algorithm Blossom V [2]
● The f igure on the right side shows the runtime compared to a 

non-perfect matching algorithm in Matlab 

P

Future work 
● Comparison with other methods e.g. INSIGHT [4], a method to estimate parameters based on histograms: How much information do we gain by looking at time series instead of histograms? 
● Comparison of different distance measures for time series and comparison of crossmatch test with other summary statistics for the rejection step in the ABC SMC 
● Improvement of performance by testing different perturbation kernels and increasing the acceptance rate for the f irst population of the ABC SMC
● Application of method to real data (e.g. single-cell time series data of transcription factor Nanog)
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● M = 450 simulated data points per iteration
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● Comparison with other methods e.g. INSIGHT [4], a method to estimate parameters based on histograms: How much information do we gain by looking at time series instead of histograms? 
● Comparison of different distance measures for time series and comparison of crossmatch test with other summary statistics for the rejection step in the ABC SMC 
● Improvement of performance by testing different perturbation kernels and increasing the acceptance rate for the f irst population of the ABC SMC
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Given: Data xobs

1. Sample parameter θ from prior distribution p(θ)

2. Simulate process x ∼ p(x|θ)
3. Accept θ if d(x, xobs) < ϵ

ABC rejection

(a) We define a prior distribution P (θ)
and we would like to approximate the posterior
distribution P (θ|D0). We start by sampling a
parameter θ∗ from the prior distribution. We
call this sampled parameter a particle.

(b) We simulate a data set D∗ according
to some simulation framework f(D|θ∗). In
our examples we use different simulation
frameworks. If we simulate a deterministic
dynamical model, we add some noise at the
time points of interest. If we simulate a
stochastic dynamical model, we do not add
any additional noise to the trajectories. We
compare the simulated data set D∗ (circles)
to the experimental data D0 (crosses) using
a distance function, d, and tolerance ϵ; if
d(D0, D∗) ≤ ϵ, we accept θ∗. The tolerance
ϵ ≥ 0 is the desired level of agreement between
D0 and D∗.

(c) The particle θ∗ is accepted because
D∗ and D0 are sufficiently close.

(d) We sample another parameter θ∗ from the
prior distribution and simulate a corresponding
dataset D∗. In this case D∗ and D0 are very
different and we reject the particle (we ”throw
it away”).

(e) We repeat the whole procedure until
N particles have been accepted. They repre-
sent a sample from P (θ|d(D0, D∗) ≤ ϵ), which
approximates the posterior distribution. If
ϵ is sufficiently small then the distribution
P (θ|d(D0, D∗) ≤ ϵ) will be a good approxi-
mation for the “true” posterior distribution,
P (θ|D0).

(f) Many particles were rejected in the
procedure, for which we have spent a lot of
computational effort for simulation. ABC
rejection is therefore computationally ineffi-
cient. We can use ABC SMC to reduce the
computational cost.
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Figure 1: Schematic representation of ABC re-
jection.
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Figure 1: Schemat ic representat ion of ABC re-
ject ion.
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ȳ(
t 2

)
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1. Approximate Bayesian Computation 
Idea: Approximate posterior distribution without calculation of the likelihood
1. Initialize thresholds                        for T populations
2. Set population index t = 1

For i = 1,...M, where M is the number of particles in one population
- Simulate                   (prior) and                      until     
- Set

3. For t = 2, … ,T, for i = 1, … , M
- Pick       from the                with probabilities 
- Draw                                (perturbation kernel) and                       until 
- Compute new weights as

Normalize         over i =1, … , M

Approximate Bayesian Computation for multivariate 
data using the crossmatch test
Carolin Loos, Carsten Marr, Jan Hasenauer
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2. The crossmatch test statistic
● Do n observed samples and m simulated samples belong to the same multivariate 

distribution?
● Test statistic has to be exact, multivariate and distribution-free
● Rosenbaums presented crossmatch test [3] is based on a complete graph
● Nodes corresponds to samples and edge weights correspond to distances between samples 
● Number of crossmatches (one node of a matched pair belongs to the samples, one to the 

simulations) of a minimum weight non-bipartite matching indicates whether all samples are 
from the same distribution  

● Under the null hypothesis

  where       the number of node pairs with exactly k observation nodes, N = n+m and I=N/2 
● Used for a criterion in the ABC SMC to decide whether to accept or reject a proposed values
=> Accept particles which produce more than      crossmatches:  
 

?
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4. Toy data: Multivariate normal random variables 5. Toy data: Time series of a birth-death process

● n = 50 trajectories of a birth-death process 
● m = 50 trajectories simulated with Gillespies 

stochastic simulation algorithm (SSA)  

How can we estimate parameters of multivariate data?
The method presented here will be used to estimate the parameters of a multivariate 
stochastic system by considering e.g. single cell time-series data. The method uses an 
Approximate Bayesian Computation scheme with sequential Monte Carlo (ABC SMC). The 
decision of accepting or rejecting a proposed parameter set is based on the crossmatch 
statistics [3], an exact multivariate and distribution free statistic. The method was tested with 
multivariate normal random variables and time series data of a simple birth-death process.

3. Implementation
● The code used for the matching is a C ++ implementation of 

the algorithm Blossom V [2]
● The f igure on the right side shows the runtime compared to a 

non-perfect matching algorithm in Matlab 

P

Future work 
● Comparison with other methods e.g. INSIGHT [4], a method to estimate parameters based on histograms: How much information do we gain by looking at time series instead of histograms? 
● Comparison of different distance measures for time series and comparison of crossmatch test with other summary statistics for the rejection step in the ABC SMC 
● Improvement of performance by testing different perturbation kernels and increasing the acceptance rate for the f irst population of the ABC SMC
● Application of method to real data (e.g. single-cell time series data of transcription factor Nanog)
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                                  and  

● M = 450 simulated data points per iteration
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statistics [3], an exact multivariate and distribution free statistic. The method was tested with 
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the algorithm Blossom V [2]
● The f igure on the right side shows the runtime compared to a 

non-perfect matching algorithm in Matlab 

P

Future work 
● Comparison with other methods e.g. INSIGHT [4], a method to estimate parameters based on histograms: How much information do we gain by looking at time series instead of histograms? 
● Comparison of different distance measures for time series and comparison of crossmatch test with other summary statistics for the rejection step in the ABC SMC 
● Improvement of performance by testing different perturbation kernels and increasing the acceptance rate for the f irst population of the ABC SMC
● Application of method to real data (e.g. single-cell time series data of transcription factor Nanog)

● n = 50 samples of               with
                                  and  

● M = 450 simulated data points per iteration
                   

15 / 30
            posterior     prior        posteriorp(θ)

θ
p(θ|D)



  Approximate Bayesian Computation with Sequential   
 Monte Carlo (ABC SMC)

7



  Approximate Bayesian Computation with Sequential   
 Monte Carlo (ABC SMC)

7

Approximate Bayesian Computation with sequential Monte Carlo

1. Initialize thresholds ϵ1 > . . . > ϵT for the T populations

A B C SM C (Toni et al., 2009)

(a) As in ABC reject ion, we define a prior
dist ribut ion P(θ) and we would like to approxi-
mate a posterior dist ribut ion P(θ|D0). In ABC
SMC we do this sequent ially by const ruct ing
intermediate dist ribut ions, which converge
to the posterior dist ribut ion. We define a
tolerance schedule ϵ1 > ϵ2 > . . . ϵT ≥ 0.

(b) We sample part icles from a prior dist ribu-
t ion unt il N part icles have been accepted (have
reached the distance smaller than ϵ1). For all
accepted part icles we calculate weights (see
[4] for formulas and derivat ion). We call the
sample of all accepted part icles ” Populat ion
1” .

(c) We then sample a part icle θ∗ from popu-
lat ion 1 and perturb it to obtain a perturbed
part icle θ∗∗ ∼ K (θ|θ∗), where K is a per-
turbat ion kernel (for example a Gaussian
random walk). We then simulate a dataset
D ∗ ∼ f (D |θ∗∗) and accept the part icle θ∗∗

if d(D0, D ∗∗) ≤ ϵ2. We repeat this unt il we
have accepted N part icles in populat ion 2. We
calculate weights for all accepted part icles.

(d) We repeat the same procedure for the
following populat ions, unt il we have accepted
N part icles of the last populat ion T and
calculated their weights. Populat ion T is a
sample of part icles that approximates the
posterior dist ribut ion.

ABC SMC is computat ionally much more
efficient than ABC reject ion (see [4] for
comparison).
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Figure 2: Schemat ic representat ion of ABC
SMC.
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2. Set populat ion index t = 1
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(c) We then sample a part icle θ∗ from popu-
lat ion 1 and perturb it to obtain a perturbed
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ȳ(
t 1

)

ȳ(
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ȳ(
t 1

)

ȳ(
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ȳ(
t 2

)

y(t1)
-2 0 2

y(
t 2)

-2

0

2

y(t1)
-2 0 2

y(
t 2)

-2

0

2
observed samples             
simulated samples               

no cross-match
cross-matches

-2 0 2

-2

0

2

x 1, . . . , x n

y 1, . . . , y m

∥x T
i y j∥

k(x i, y j)
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ȳ(
t 2

)

y(t1)
-2 0 2

y(
t 2)

-2

0

2

y(t1)
-2 0 2

y(
t 2)

-2

0

2
observed samples             
simulated samples               

no cross-match
cross-matches

-2 0 2

-2

0

2

x 1, . . . , x n

y 1, . . . , y m

∥x T
i y j∥

k(x i, y j)
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ȳ (t 1 )
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4 ApproximateBayesian computat ion for single-cell t ime-lapsedata using mult ivariatestat ist ics
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F igur e 4.4: ABC SMC using test stat ist ics to est imate entries of the covariance matrix of a
bivariate normal dist ribut ion. (A ) Depict ion of 100 samples x ∼ N2 (µ,Σ), with
µ = (1, 1)T and Σ =

( θ1 θ2
θ2 θ1

)
, with θ1 = 1 and θ2 = 0.5. (B ) Results of ABC

with CM, MMD and KS. The yellow shaded are shows the region, where the prior
p(θ) > 0.

The posterior approximat ion for θ2 is much wider and only restricted by the relat ionship
|θ2| ≤ θ1. The difference can be explained by the lack of informat ion included in the
marginal dist ribut ions that are examined using KS. Informat ion about θ1 can only be
gained by invest igat ing the correlat ions among the measurements. The quality of the
approximat ion did not improve significant ly for lower tolerances.

We assessed ABC SMC with different approaches to incorporate CM, MMD and KS. For
the est imat ion of the entries of the covariance matrix, only ABC SMC with mult ivariate
stat ist ics, CM and MMD, was able to est imate the parameters. The CM test requires a
higher computat ion t ime than the MMD and yields less accurate approximat ions of the
trueposterior dist ribut ion for theexampleof a bivariatenormal dist ribut ion. Accordingly,
we use the MMD for our subsequent studies.

4.4 Simulation example: Single-cell time-series of a
one-stage model of gene expression

In this sect ion we apply the ABC SMC scheme described before to simulat ion examples
of a one-stage model of gene expression (see Figure 4.5A).

4.4.1 Implementation
For the generat ion of art ificial data of the one-stage model of gene expression we use a C
implementat ion of thestochast ic simulat ion algorithm (SSA) developed by DennisRickert .
We implemented the ABC SMC algorithm in MATLAB according to Algorithm 4.2 and
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F igur e 4.4: ABC SMC using test stat ist ics to est imate entries of the covariance matrix of a
bivariate normal dist ribut ion. (A ) Depict ion of 100 samples x ∼ N2 (µ,Σ), with
µ = (1, 1)T and Σ =

( θ1 θ2
θ2 θ1

)
, with θ1 = 1 and θ2 = 0.5. (B ) Results of ABC

with CM, MMD and KS. The yellow shaded are shows the region, where the prior
p(θ) > 0.

The posterior approximat ion for θ2 is much wider and only restricted by the relat ionship
|θ2| ≤ θ1. The difference can be explained by the lack of informat ion included in the
marginal dist ribut ions that are examined using KS. Informat ion about θ1 can only be
gained by invest igat ing the correlat ions among the measurements. The quality of the
approximat ion did not improve significant ly for lower tolerances.

We assessed ABC SMC with different approaches to incorporate CM, MMD and KS. For
the est imat ion of the entries of the covariance matrix, only ABC SMC with mult ivariate
stat ist ics, CM and MMD, was able to est imate the parameters. The CM test requires a
higher computat ion t ime than the MMD and yields less accurate approximat ions of the
trueposterior dist ribut ion for theexampleof a bivariatenormal dist ribut ion. Accordingly,
we use the MMD for our subsequent studies.

4.4 Simulation example: Single-cell time-series of a
one-stage model of gene expression

In this sect ion we apply the ABC SMC scheme described before to simulat ion examples
of a one-stage model of gene expression (see Figure 4.5A).

4.4.1 Implementation
For the generat ion of art ificial data of the one-stage model of gene expression we use a C
implementat ion of thestochast ic simulat ion algorithm (SSA) developed by DennisRickert .
We implemented the ABC SMC algorithm in MATLAB according to Algorithm 4.2 and
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Figure 4.4: ABC SMC using test statistics to estimate entries of the covariance matrix of a
bivariate normal distribution. (A) Depiction of 100 samples x ∼ N2 (µ,Σ), with
µ = (1, 1)T and Σ =

( θ1 θ2
θ2 θ1

)
, with θ1 = 1 and θ2 = 0.5. (B) Results of ABC

with CM, MMD and KS. The yellow shaded are shows the region, where the prior
p(θ) > 0.

The posterior approximation for θ2 is much wider and only restricted by the relationship
|θ2| ≤ θ1. The difference can be explained by the lack of information included in the
marginal distributions that are examined using KS. Information about θ1 can only be
gained by investigating the correlations among the measurements. The quality of the
approximation did not improve significantly for lower tolerances.

We assessed ABC SMC with different approaches to incorporate CM, MMD and KS. For
the estimation of the entries of the covariance matrix, only ABC SMC with multivariate
statistics, CM and MMD, was able to estimate the parameters. The CM test requires a
higher computation time than the MMD and yields less accurate approximations of the
true posterior distribution for the example of a bivariate normal distribution. Accordingly,
we use the MMD for our subsequent studies.

4.4 Simulation example: Single-cell time-series of a
one-stage model of gene expression

In this section we apply the ABC SMC scheme described before to simulation examples
of a one-stage model of gene expression (see Figure 4.5A).

4.4.1 Implementation

For the generation of artificial data of the one-stage model of gene expression we use a C
implementation of the stochastic simulation algorithm (SSA) developed by Dennis Rickert.
We implemented the ABC SMC algorithm in MATLAB according to Algorithm 4.2 and
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bivariate normal distribution. (A) Depiction of 100 samples x ∼ N2 (µ,Σ), with
µ = (1, 1)T and Σ =

( θ1 θ2
θ2 θ1

)
, with θ1 = 1 and θ2 = 0.5. (B) Results of ABC

with CM, MMD and KS. The yellow shaded are shows the region, where the prior
p(θ) > 0.

The posterior approximation for θ2 is much wider and only restricted by the relationship
|θ2| ≤ θ1. The difference can be explained by the lack of information included in the
marginal distributions that are examined using KS. Information about θ1 can only be
gained by investigating the correlations among the measurements. The quality of the
approximation did not improve significantly for lower tolerances.

We assessed ABC SMC with different approaches to incorporate CM, MMD and KS. For
the estimation of the entries of the covariance matrix, only ABC SMC with multivariate
statistics, CM and MMD, was able to estimate the parameters. The CM test requires a
higher computation time than the MMD and yields less accurate approximations of the
true posterior distribution for the example of a bivariate normal distribution. Accordingly,
we use the MMD for our subsequent studies.

4.4 Simulation example: Single-cell time-series of a
one-stage model of gene expression

In this section we apply the ABC SMC scheme described before to simulation examples
of a one-stage model of gene expression (see Figure 4.5A).

4.4.1 Implementation

For the generation of artificial data of the one-stage model of gene expression we use a C
implementation of the stochastic simulation algorithm (SSA) developed by Dennis Rickert.
We implemented the ABC SMC algorithm in MATLAB according to Algorithm 4.2 and
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Figure 4.4: ABC SMC using test statistics to estimate entries of the covariance matrix of a
bivariate normal distribution. (A) Depiction of 100 samples x ∼ N2 (µ,Σ), with
µ = (1, 1)T and Σ =

( θ1 θ2
θ2 θ1

)
, with θ1 = 1 and θ2 = 0.5. (B) Results of ABC

with CM, MMD and KS. The yellow shaded are shows the region, where the prior
p(θ) > 0.

The posterior approximation for θ2 is much wider and only restricted by the relationship
|θ2| ≤ θ1. The difference can be explained by the lack of information included in the
marginal distributions that are examined using KS. Information about θ1 can only be
gained by investigating the correlations among the measurements. The quality of the
approximation did not improve significantly for lower tolerances.

We assessed ABC SMC with different approaches to incorporate CM, MMD and KS. For
the estimation of the entries of the covariance matrix, only ABC SMC with multivariate
statistics, CM and MMD, was able to estimate the parameters. The CM test requires a
higher computation time than the MMD and yields less accurate approximations of the
true posterior distribution for the example of a bivariate normal distribution. Accordingly,
we use the MMD for our subsequent studies.

4.4 Simulation example: Single-cell time-series of a
one-stage model of gene expression

In this section we apply the ABC SMC scheme described before to simulation examples
of a one-stage model of gene expression (see Figure 4.5A).

4.4.1 Implementation

For the generation of artificial data of the one-stage model of gene expression we use a C
implementation of the stochastic simulation algorithm (SSA) developed by Dennis Rickert.
We implemented the ABC SMC algorithm in MATLAB according to Algorithm 4.2 and
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Figure 4.4: ABC SMC using test statistics to estimate entries of the covariance matrix of a
bivariate normal distribution. (A) Depiction of 100 samples x ∼ N2 (µ,Σ), with
µ = (1, 1)T and Σ =

( θ1 θ2
θ2 θ1

)
, with θ1 = 1 and θ2 = 0.5. (B) Results of ABC

with CM, MMD and KS. The yellow shaded are shows the region, where the prior
p(θ) > 0.

The posterior approximation for θ2 is much wider and only restricted by the relationship
|θ2| ≤ θ1. The difference can be explained by the lack of information included in the
marginal distributions that are examined using KS. Information about θ1 can only be
gained by investigating the correlations among the measurements. The quality of the
approximation did not improve significantly for lower tolerances.

We assessed ABC SMC with different approaches to incorporate CM, MMD and KS. For
the estimation of the entries of the covariance matrix, only ABC SMC with multivariate
statistics, CM and MMD, was able to estimate the parameters. The CM test requires a
higher computation time than the MMD and yields less accurate approximations of the
true posterior distribution for the example of a bivariate normal distribution. Accordingly,
we use the MMD for our subsequent studies.

4.4 Simulation example: Single-cell time-series of a
one-stage model of gene expression

In this section we apply the ABC SMC scheme described before to simulation examples
of a one-stage model of gene expression (see Figure 4.5A).

4.4.1 Implementation

For the generation of artificial data of the one-stage model of gene expression we use a C
implementation of the stochastic simulation algorithm (SSA) developed by Dennis Rickert.
We implemented the ABC SMC algorithm in MATLAB according to Algorithm 4.2 and
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F igur e 4.5: I llust rat ion of art ificial single-cell t ime-lapse data. (A ) One stage model of gene
expression with mRNA synthesis rate λ and degradat ion rate γ. (B ) Art ificial
non-equilibrium t ime-series of n = 10 cells sampled every 1

5 h. (C) Equilibrium
t ime-series of n = 10 cells measured at nt = 100 t ime points.

parameter set t ings yield almost the same approximat ion of the posterior dist ribut ion.

For the case of 100 cells and 100 measurements, the MAP est imates are given by θM AP
M M D =

(4.8259, 0.2945)T and θM AP
K S = (5.0069, 0.3078)T . We generated 1000 t ime-series based on

the MAP est imates and compared the mean and variance of the molecule numbers (see
Figure 4.6C) as well as mean and variance of the corresponding autocorrelat ion funct ion
(see Figure 4.6D). The fits and the corresponding propert ies of the data are almost indis-
t inguishable.

We addit ionally compare the approximat ions with those obtained by the finite state pro-
ject ion (FSP) (Munsky & Khammash, 2006). This approach truncates the state space of
the species and can be used for small and medium-sized systems. We sample from the
posterior using a FSP-based likelihood and the MCMC toolbox DRAM (Haario et al.,
2006). The results are shown in Figure 4.6. The approximat ions obtained by the ABC
sampler are wider than the approximat ion using the FSP. ABC with MMD and KS yield
similar results. To study the influence of the dimension of the t ime-series, we generated
a scenario, in which 10 cells are measured at only 10 t ime points. While the approxi-
mat ion does not significant ly improve compared to the FSP-based approximat ion for an
increasing numbers of cells, the algorithm produces a better approximat ion for the case
of measurements at nt = 10 t ime points.

4.4.3 Steady state time-series
The results for Scenario 2 are shown in Figure 4.7. ABC SMC using KS is only able to
est imate the fract ion λ/ γ (Figure 4.7B). This is explained by the fact that the marginals
analyzed using the KS distance do not change over t ime. In contrast , the proposed
mult ivariate methods using MMD exploits the temporal fluctuat ions and can infer both
parameters (Figure4.7A). Theposterior dist ribut ion illustrated in Figure4.7B differsonly
slight ly from the init ial uniform prior dist ribut ion. Surprisingly, the posterior dist ribut ion
is shifted towards smaller parameter values and the true values are only at the boundary
of the posterior approximat ions.
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parameter set t ings yield almost the same approximat ion of the posterior dist ribut ion.

For the case of 100 cells and 100 measurements, the MAP est imates are given by θM AP
M M D =

(4.8259, 0.2945)T and θM AP
K S = (5.0069, 0.3078)T . We generated 1000 t ime-series based on

the MAP est imates and compared the mean and variance of the molecule numbers (see
Figure 4.6C) as well as mean and variance of the corresponding autocorrelat ion funct ion
(see Figure 4.6D). The fits and the corresponding propert ies of the data are almost indis-
t inguishable.

We addit ionally compare the approximat ions with those obtained by the finite state pro-
ject ion (FSP) (Munsky & Khammash, 2006). This approach truncates the state space of
the species and can be used for small and medium-sized systems. We sample from the
posterior using a FSP-based likelihood and the MCMC toolbox DRAM (Haario et al.,
2006). The results are shown in Figure 4.6. The approximat ions obtained by the ABC
sampler are wider than the approximat ion using the FSP. ABC with MMD and KS yield
similar results. To study the influence of the dimension of the t ime-series, we generated
a scenario, in which 10 cells are measured at only 10 t ime points. While the approxi-
mat ion does not significant ly improve compared to the FSP-based approximat ion for an
increasing numbers of cells, the algorithm produces a better approximat ion for the case
of measurements at nt = 10 t ime points.

4.4.3 Steady state time-series
The results for Scenario 2 are shown in Figure 4.7. ABC SMC using KS is only able to
est imate the fract ion λ/ γ (Figure 4.7B). This is explained by the fact that the marginals
analyzed using the KS distance do not change over t ime. In contrast , the proposed
mult ivariate methods using MMD exploits the temporal fluctuat ions and can infer both
parameters (Figure4.7A). Theposterior dist ribut ion illustrated in Figure4.7B differsonly
slight ly from the init ial uniform prior dist ribut ion. Surprisingly, the posterior dist ribut ion
is shifted towards smaller parameter values and the true values are only at the boundary
of the posterior approximat ions.
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F igur e 4.5: I llust rat ion of art ificial single-cell t ime-lapse data. (A ) One stage model of gene
expression with mRNA synthesis rate λ and degradat ion rate γ. (B ) Art ificial
non-equilibrium t ime-series of n = 10 cells sampled every 1

5 h. (C) Equilibrium
t ime-series of n = 10 cells measured at nt = 100 t ime points.

Since stochast ic simulat ions can be computat ionally expensive for some proposed param-
eter combinat ions, we try to avoid a too high perturbat ion of the proposed part icle, but
st ill want to have enough flexibility to explore the parameters space. This is achieved
by using a k-nearest neighbor perturbat ion kernel. We increase the number of part icles
and repeat the approximat ion if the result are not reproducible, i.e., if we do not obtain
a similar approximat ion of the posterior within three repet it ions. As we know the true
parameters for the simulat ion study, we generate 1000 data sets using the true values of
the parameters and calculate the corresponding distances. We use a threshold below the
5th percent ile of those distances.

In the following, we consider two scenarios:

Scenar io 1 The init ial mRNA number is zero for all cells (see Figure 4.5B).
Scenar io 2 The init ial mRNA number is sampled from the steady state distribut ion

(see Figure 4.5C).

For both scenarioswegeneraten = 10, 100 and 1000 single-cell t ime-seriesfor thesynthesis
rate λ = 5h−1 and degradat ion rate γ = 0.3h−1 using the SSA. The init ial condit ions
are [mRNA](0) = 0 for Scenario 1 and [mRNA](0) ∼ Poi(λ/γ) for Scenario 2 (Shahrezaei
& Swain, 2008). We simulate the system for 20h and record the mRNA at nt = 100
equidistant t ime points. The data sets are visualized for the case of n = 10 cells in
Figures4.5B-C. For the evaluat ion of our method we assume λ and γ to be unknown and
est imate them from the data.

4.4.2 Out of steady state time-series
In the following, we describe the results for Scenario 1, in which the populat ion exhibits
t ransient behavior. Performing ABC SMC with the set t ings described in Sect ion 4.4.1,
we obtain the posterior approximat ions shown in Figures 4.6A and B. As expected, in-
creasing the number of cells yields a more narrow posterior dist ribut ion. The scat ter plot
of the samples shows that the parameters are highly correlated. Moreover, the results are
reproducible, indicated by the fact that three repet it ions of the sampling with the same
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5 h. (C) Equilibrium
t ime-series of n = 10 cells measured at nt = 100 t ime points.

Since stochast ic simulat ions can be computat ionally expensive for some proposed param-
eter combinat ions, we try to avoid a too high perturbat ion of the proposed part icle, but
st ill want to have enough flexibility to explore the parameters space. This is achieved
by using a k-nearest neighbor perturbat ion kernel. We increase the number of part icles
and repeat the approximat ion if the result are not reproducible, i.e., if we do not obtain
a similar approximat ion of the posterior within three repet it ions. As we know the true
parameters for the simulat ion study, we generate 1000 data sets using the true values of
the parameters and calculate the corresponding distances. We use a threshold below the
5th percent ile of those distances.

In the following, we consider two scenarios:

Scenar io 1 The init ial mRNA number is zero for all cells (see Figure 4.5B).
Scenar io 2 The init ial mRNA number is sampled from the steady state distribut ion

(see Figure 4.5C).

For both scenarioswegeneraten = 10, 100 and 1000 single-cell t ime-seriesfor thesynthesis
rate λ = 5h−1 and degradat ion rate γ = 0.3h−1 using the SSA. The init ial condit ions
are [mRNA](0) = 0 for Scenario 1 and [mRNA](0) ∼ Poi(λ/γ) for Scenario 2 (Shahrezaei
& Swain, 2008). We simulate the system for 20h and record the mRNA at nt = 100
equidistant t ime points. The data sets are visualized for the case of n = 10 cells in
Figures4.5B-C. For the evaluat ion of our method we assume λ and γ to be unknown and
est imate them from the data.

4.4.2 Out of steady state time-series
In the following, we describe the results for Scenario 1, in which the populat ion exhibits
t ransient behavior. Performing ABC SMC with the set t ings described in Sect ion 4.4.1,
we obtain the posterior approximat ions shown in Figures 4.6A and B. As expected, in-
creasing the number of cells yields a more narrow posterior dist ribut ion. The scat ter plot
of the samples shows that the parameters are highly correlated. Moreover, the results are
reproducible, indicated by the fact that three repet it ions of the sampling with the same
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F igur e 4.5: I llust rat ion of art ificial single-cell t ime-lapse data. (A ) One stage model of gene
expression with mRNA synthesis rate λ and degradat ion rate γ. (B ) Art ificial
non-equilibrium t ime-series of n = 10 cells sampled every 1

5 h. (C) Equilibrium
t ime-series of n = 10 cells measured at nt = 100 t ime points.

Since stochast ic simulat ions can be computat ionally expensive for some proposed param-
eter combinat ions, we try to avoid a too high perturbat ion of the proposed part icle, but
st ill want to have enough flexibility to explore the parameters space. This is achieved
by using a k-nearest neighbor perturbat ion kernel. We increase the number of part icles
and repeat the approximat ion if the result are not reproducible, i.e., if we do not obtain
a similar approximat ion of the posterior within three repet it ions. As we know the true
parameters for the simulat ion study, we generate 1000 data sets using the true values of
the parameters and calculate the corresponding distances. We use a threshold below the
5th percent ile of those distances.

In the following, we consider two scenarios:

Scenar io 1 The init ial mRNA number is zero for all cells (see Figure 4.5B).
Scenar io 2 The init ial mRNA number is sampled from the steady state distribut ion

(see Figure 4.5C).

For both scenarioswegeneraten = 10, 100 and 1000 single-cell t ime-seriesfor thesynthesis
rate λ = 5h−1 and degradat ion rate γ = 0.3h−1 using the SSA. The init ial condit ions
are [mRNA](0) = 0 for Scenario 1 and [mRNA](0) ∼ Poi(λ/γ) for Scenario 2 (Shahrezaei
& Swain, 2008). We simulate the system for 20h and record the mRNA at nt = 100
equidistant t ime points. The data sets are visualized for the case of n = 10 cells in
Figures4.5B-C. For the evaluat ion of our method we assume λ and γ to be unknown and
est imate them from the data.

4.4.2 Out of steady state time-series
In the following, we describe the results for Scenario 1, in which the populat ion exhibits
t ransient behavior. Performing ABC SMC with the set t ings described in Sect ion 4.4.1,
we obtain the posterior approximat ions shown in Figures 4.6A and B. As expected, in-
creasing the number of cells yields a more narrow posterior dist ribut ion. The scat ter plot
of the samples shows that the parameters are highly correlated. Moreover, the results are
reproducible, indicated by the fact that three repet it ions of the sampling with the same
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Figures4.5B-C. For the evaluat ion of our method we assume λ and γ to be unknown and
est imate them from the data.

4.4.2 Out of steady state time-series
In the following, we describe the results for Scenario 1, in which the populat ion exhibits
t ransient behavior. Performing ABC SMC with the set t ings described in Sect ion 4.4.1,
we obtain the posterior approximat ions shown in Figures 4.6A and B. As expected, in-
creasing the number of cells yields a more narrow posterior dist ribut ion. The scat ter plot
of the samples shows that the parameters are highly correlated. Moreover, the results are
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4.4 Simulat ion example: Single-cell t ime-series of a one-stage model of gene expression
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Figur e 4.6: Results of ABC SMC for out of steady state t ime-series data. (A , B ) Posterior
approximat ions obtained by ABC SMC with (A ) MMD and (B ) KS. (C) Fit ted
mean and variance of number of molecules for 1000 simulat ion generated with the
MAP est imates. The single t rajectories are illust rated in gray. (D ) Fit ted mean
and variance of the autocorrelat ion funct ion for 1000 simulat ion generated with
the MAP est imates. The observed and simulated means and variances are nearly
indist inguishable for both, MMD and KS. (E) Comparison of marginals to results
obtained by FSP for 10 cells and 10 t ime points (left ), and 10, 100, 1000 cells with
100 measurements. The different lines show the marginals for different repet it ions
of the sampling procedure.
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Figur e 4.6: Results of ABC SMC for out of steady state t ime-series data. (A , B ) Posterior
approximat ions obtained by ABC SMC with (A ) MMD and (B ) KS. (C) Fit ted
mean and variance of number of molecules for 1000 simulat ion generated with the
MAP est imates. The single t rajectories are illust rated in gray. (D ) Fit ted mean
and variance of the autocorrelat ion funct ion for 1000 simulat ion generated with
the MAP est imates. The observed and simulated means and variances are nearly
indist inguishable for both, MMD and KS. (E) Comparison of marginals to results
obtained by FSP for 10 cells and 10 t ime points (left ), and 10, 100, 1000 cells with
100 measurements. The different lines show the marginals for different repet it ions
of the sampling procedure.
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Figur e 4.6: Results of ABC SMC for out of steady state t ime-series data. (A , B ) Posterior
approximat ions obtained by ABC SMC with (A ) MMD and (B ) KS. (C) Fit ted
mean and variance of number of molecules for 1000 simulat ion generated with the
MAP est imates. The single t rajectories are illust rated in gray. (D ) Fit ted mean
and variance of the autocorrelat ion funct ion for 1000 simulat ion generated with
the MAP est imates. The observed and simulated means and variances are nearly
indist inguishable for both, MMD and KS. (E) Comparison of marginals to results
obtained by FSP for 10 cells and 10 t ime points (left ), and 10, 100, 1000 cells with
100 measurements. The different lines show the marginals for different repet it ions
of the sampling procedure.
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Figur e 4.6: Results of ABC SMC for out of steady state t ime-series data. (A , B ) Posterior
approximat ions obtained by ABC SMC with (A ) MMD and (B ) KS. (C) Fit ted
mean and variance of number of molecules for 1000 simulat ion generated with the
MAP est imates. The single t rajectories are illust rated in gray. (D ) Fit ted mean
and variance of the autocorrelat ion funct ion for 1000 simulat ion generated with
the MAP est imates. The observed and simulated means and variances are nearly
indist inguishable for both, MMD and KS. (E) Comparison of marginals to results
obtained by FSP for 10 cells and 10 t ime points (left ), and 10, 100, 1000 cells with
100 measurements. The different lines show the marginals for different repet it ions
of the sampling procedure.
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MMD and KS perform similar

4.4 Simulat ion example: Single-cell t ime-series of a one-stage model of gene expression
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Figur e 4.6: Results of ABC SMC for out of steady state t ime-series data. (A , B ) Posterior
approximat ions obtained by ABC SMC with (A ) MMD and (B ) KS. (C) Fit ted
mean and variance of number of molecules for 1000 simulat ion generated with the
MAP est imates. The single t rajectories are illust rated in gray. (D ) Fit ted mean
and variance of the autocorrelat ion funct ion for 1000 simulat ion generated with
the MAP est imates. The observed and simulated means and variances are nearly
indist inguishable for both, MMD and KS. (E) Comparison of marginals to results
obtained by FSP for 10 cells and 10 t ime points (left ), and 10, 100, 1000 cells with
100 measurements. The different lines show the marginals for different repet it ions
of the sampling procedure.
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• Comparison of posterior approximation with Finite State Projection 
(FSP) 

 Posterior approximations for non-equilibrium time-series
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• Comparison of posterior approximation with Finite State Projection 
(FSP) 

• FSP gives narrower posterior approximations compared to MMD 
and KS
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4.4 Simulat ion example: Single-cell t ime-series of a one-stage model of gene expression
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Figur e 4.7: Results of ABC SMC for steady state t ime-series data. (A , B ) Posterior approx-
imat ions obtained by ABC SMC with (A ) MMD and (B ) KS. (C) Fit ted mean
and variance of number of molecules for 1000 simulat ion generated with the MAP
est imates. The single t rajectories are illust rated in gray. (D ) Fit ted mean and
variance of the autocorrelat ion funct ion for 1000 simulat ion generated with the
MAP est imates of the MMD. (E) Comparison of marginals to results obtained by
FSP for 10 cells and 10 t ime points (left ), and 10, 100, 1000 cells with 100 mea-
surements. The different lines show the marginals for different repet it ions of the
sampling procedure.
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Figur e 4.7: Results of ABC SMC for steady state t ime-series data. (A , B ) Posterior approx-
imat ions obtained by ABC SMC with (A ) MMD and (B ) KS. (C) Fit ted mean
and variance of number of molecules for 1000 simulat ion generated with the MAP
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FSP for 10 cells and 10 t ime points (left ), and 10, 100, 1000 cells with 100 mea-
surements. The different lines show the marginals for different repet it ions of the
sampling procedure.

63

 Posterior approximations for equilibrium time-series

18

4.4 Simulat ion example: Single-cell t ime-series of a one-stage model of gene expression

A

de
ns

ity

0

10

20
MMD

true value
n=10
n=100
n=1000

density
01020

log10(λ)
0.2 0.4 0.6 0.8

lo
g 10

(γ
)

-1

-0.8

-0.6

-0.4

B

de
ns

ity

0

0.5
KS

true value
n=10
n=100
n=1000
prior

density
00.5

log10(λ)
-4 -2 0 2

lo
g 10

(γ
)

-4

-2

0

C

time [h]
0 5 10 15 20

m
RN

A 
[n

um
be

r o
f m

ol
.]

0

10

20

30
data
MMD fit
KS fit

D

lag
0 5 10 15 20

sa
m

pl
e 

au
to

co
rre

la
tio

n

-0.4
-0.2

0
0.2
0.4
0.6
0.8

data
MMD fit

E

log10(λ)
-1 0 1 2

de
ns

ity

0

2

4

6
log10(γ)

-2 -1 0 1

de
ns

ity

0

2

4

6
n=10, nt=10

log10(λ)
0 0.5 1

0

10

20
log10(γ)

-1.5 -1 -0.5
0

10

20
n=10, nt=100

log10(λ)
0.5 1

0

20

40

60
log10(γ)

-1 -0.5 0
0

20

40

60
n=100, nt=100

log10(λ)
0.6 0.7 0.8
0

100

200
log10(γ)

-0.6 -0.5 -0.4
0

100

200
n=1000, nt=100

log10(λ)
0 1 2

fre
qu

en
cy

0

5

10

log10(γ)
-1 0 1

fre
qu

en
cy

0

5

10
n=10, nt=10

log10(λ)
0 0.5 1

0

10

20

log10(γ)
-1 -0.5 0

0

10

20
n=10, nt=100

log10(λ)
0.6 0.7 0.8
0

20

40

60

log10(γ)
-0.8 -0.6 -0.4
0

20

40

60 true value
FSP
MMD
KS

log10(λ)
0.65 0.7 0.75
0

100

200

MMD
KS

Figur e 4.7: Results of ABC SMC for steady state t ime-series data. (A , B ) Posterior approx-
imat ions obtained by ABC SMC with (A ) MMD and (B ) KS. (C) Fit ted mean
and variance of number of molecules for 1000 simulat ion generated with the MAP
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Figur e 4.7: Results of ABC SMC for steady state t ime-series data. (A , B ) Posterior approx-
imat ions obtained by ABC SMC with (A ) MMD and (B ) KS. (C) Fit ted mean
and variance of number of molecules for 1000 simulat ion generated with the MAP
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sampling procedure.
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KS can only estimate ratio of parameters

4.4 Simulat ion example: Single-cell t ime-series of a one-stage model of gene expression
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Figur e 4.7: Results of ABC SMC for steady state t ime-series data. (A , B ) Posterior approx-
imat ions obtained by ABC SMC with (A ) MMD and (B ) KS. (C) Fit ted mean
and variance of number of molecules for 1000 simulat ion generated with the MAP
est imates. The single t rajectories are illust rated in gray. (D ) Fit ted mean and
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Bigger difference between FSP and MMD for equilibrium data
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• Data often contain information about the ancestors of a cell

1 Etzrodt et al., Cell Stem Cell (2014)
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Fig. 4. Results for Scenario1. Approximated posteriors obtained by ABC SMC with
(a) MMD and (b) KS. (c) Fitted mean and variance of number of molecules for 1000
simulation generated with the MAP estimates. The single trajectories are illustrated
in gray. (d) Fitted mean and variance of the autocorrelation function. (e) Comparison
with FSP. The different lines show the marginals for different repetitions of ABC.

5 Discussion and Outlook

In this paper, we developed and evaluated an ABC SMC scheme to infer parame-
ters based on single-cell time-lapse data. We assessed the method for multivariate
data sampled from a bivariate normal distribution and compared different test
statistics to compare observed and simulated data sets. Both parameters could
only be estimated with high confidence for the case of using a multivariate test
statistics.

In addition, we found that for this example no advantage is gained by ex-
ploiting the relationships between thresholds and simulations needed for a given
confidence level α. The final tolerances determined by inequalities for the test
statistics are too high and yield no reasonable approximation of the posterior
distribution. Only the error of falsely rejecting a true sample of the posterior

xi = (xi,mother, xi,daughter1 , xi,daughter2)
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Fig. 4. Results for Scenario1. Approximated posteriors obtained by ABC SMC with
(a) MMD and (b) KS. (c) Fitted mean and variance of number of molecules for 1000
simulation generated with the MAP estimates. The single trajectories are illustrated
in gray. (d) Fitted mean and variance of the autocorrelation function. (e) Comparison
with FSP. The different lines show the marginals for different repetitions of ABC.

5 Discussion and Outlook

In this paper, we developed and evaluated an ABC SMC scheme to infer parame-
ters based on single-cell time-lapse data. We assessed the method for multivariate
data sampled from a bivariate normal distribution and compared different test
statistics to compare observed and simulated data sets. Both parameters could
only be estimated with high confidence for the case of using a multivariate test
statistics.

In addition, we found that for this example no advantage is gained by ex-
ploiting the relationships between thresholds and simulations needed for a given
confidence level α. The final tolerances determined by inequalities for the test
statistics are too high and yield no reasonable approximation of the posterior
distribution. Only the error of falsely rejecting a true sample of the posterior

xi = (xi,mother, xi,daughter1 , xi,daughter2)
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Fig. 4. Results for Scenario1. Approximated posteriors obtained by ABC SMC with
(a) MMD and (b) KS. (c) Fitted mean and variance of number of molecules for 1000
simulation generated with the MAP estimates. The single trajectories are illustrated
in gray. (d) Fitted mean and variance of the autocorrelation function. (e) Comparison
with FSP. The different lines show the marginals for different repetitions of ABC.

5 Discussion and Outlook

In this paper, we developed and evaluated an ABC SMC scheme to infer parame-
ters based on single-cell time-lapse data. We assessed the method for multivariate
data sampled from a bivariate normal distribution and compared different test
statistics to compare observed and simulated data sets. Both parameters could
only be estimated with high confidence for the case of using a multivariate test
statistics.

In addition, we found that for this example no advantage is gained by ex-
ploiting the relationships between thresholds and simulations needed for a given
confidence level α. The final tolerances determined by inequalities for the test
statistics are too high and yield no reasonable approximation of the posterior
distribution. Only the error of falsely rejecting a true sample of the posterior

xi = (xi,mother, xi,daughter1 , xi,daughter2)
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F ig. 4. R esul t s for Scenar io1. Approximated posteriors obtained by ABC SMC with
(a) MMD and (b) KS. (c) Fit ted mean and variance of number of molecules for 1000
simulat ion generated with the MAP est imates. The single t rajectories are illust rated
in gray. (d) Fit ted mean and variance of the autocorrelat ion funct ion. (e) Comparison
with FSP. The different lines show the marginals for different repet it ions of ABC.

5 D iscussion and Out look

In this paper, we developed and evaluated an ABC SMC scheme to infer parame-
tersbased on single-cell t ime-lapsedata. Weassessed themethod for mult ivariate
data sampled from a bivariate normal dist ribut ion and compared different test
stat ist ics to compare observed and simulated data sets. Both parameters could
only be est imated with high confidence for the case of using a mult ivariate test
stat ist ics.

In addit ion, we found that for this example no advantage is gained by ex-
ploit ing the relat ionships between thresholds and simulat ions needed for a given
confidence level α. The final tolerances determined by inequalit ies for the test
stat ist ics are too high and yield no reasonable approximat ion of the posterior
dist ribut ion. Only the error of falsely reject ing a t rue sample of the posterior

xi = (xi,m other , x i,daughter1 , x i,daughter2 )
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Fig. 4. Results for Scenario1. Approximated posteriors obtained by ABC SMC with
(a) MMD and (b) KS. (c) Fitted mean and variance of number of molecules for 1000
simulation generated with the MAP estimates. The single trajectories are illustrated
in gray. (d) Fitted mean and variance of the autocorrelation function. (e) Comparison
with FSP. The different lines show the marginals for different repetitions of ABC.

5 Discussion and Outlook

In this paper, we developed and evaluated an ABC SMC scheme to infer parame-
ters based on single-cell time-lapse data. We assessed the method for multivariate
data sampled from a bivariate normal distribution and compared different test
statistics to compare observed and simulated data sets. Both parameters could
only be estimated with high confidence for the case of using a multivariate test
statistics.

In addition, we found that for this example no advantage is gained by ex-
ploiting the relationships between thresholds and simulations needed for a given
confidence level α. The final tolerances determined by inequalities for the test
statistics are too high and yield no reasonable approximation of the posterior
distribution. Only the error of falsely rejecting a true sample of the posterior

xi = (xi,mother, xi,daughter1 , xi,daughter2)
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F ig. 4. R esul t s for Scenar io1. Approximated posteriors obtained by ABC SMC with
(a) MMD and (b) KS. (c) Fit ted mean and variance of number of molecules for 1000
simulat ion generated with the MAP est imates. The single t rajectories are illust rated
in gray. (d) Fit ted mean and variance of the autocorrelat ion funct ion. (e) Comparison
with FSP. The different lines show the marginals for different repet it ions of ABC.

5 D iscussion and Out look

In this paper, we developed and evaluated an ABC SMC scheme to infer parame-
tersbased on single-cell t ime-lapsedata. Weassessed themethod for mult ivariate
data sampled from a bivariate normal dist ribut ion and compared different test
stat ist ics to compare observed and simulated data sets. Both parameters could
only be est imated with high confidence for the case of using a mult ivariate test
stat ist ics.

In addit ion, we found that for this example no advantage is gained by ex-
ploit ing the relat ionships between thresholds and simulat ions needed for a given
confidence level α. The final tolerances determined by inequalit ies for the test
stat ist ics are too high and yield no reasonable approximat ion of the posterior
dist ribut ion. Only the error of falsely reject ing a t rue sample of the posterior

xi = (xi,m other , x i,daughter1 , x i,daughter2 )
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F ig. 4. R esul t s for Scenar io1. Approximated posteriors obtained by ABC SMC with
(a) MMD and (b) KS. (c) Fit ted mean and variance of number of molecules for 1000
simulat ion generated with the MAP est imates. The single t rajectories are illust rated
in gray. (d) Fit ted mean and variance of the autocorrelat ion funct ion. (e) Comparison
with FSP. The different lines show the marginals for different repet it ions of ABC.

5 D iscussion and Out look

In this paper, we developed and evaluated an ABC SMC scheme to infer parame-
tersbased on single-cell t ime-lapsedata. Weassessed themethod for mult ivariate
data sampled from a bivariate normal dist ribut ion and compared different test
stat ist ics to compare observed and simulated data sets. Both parameters could
only be est imated with high confidence for the case of using a mult ivariate test
stat ist ics.

In addit ion, we found that for this example no advantage is gained by ex-
ploit ing the relat ionships between thresholds and simulat ions needed for a given
confidence level α. The final tolerances determined by inequalit ies for the test
stat ist ics are too high and yield no reasonable approximat ion of the posterior
dist ribut ion. Only the error of falsely reject ing a t rue sample of the posterior

xi = (xi,m other , x i,daughter1 , x i,daughter2 )
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Flexible framework for the analysis of single-cell time-lapse data, which 
might help getting deeper insight into the cellular mechanisms and 

therefore advance e.g. stem cell research.
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